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Based on the network paradigm of complexity, a systematic analysis of 
the dynamics of the largest stock markets in the world has been carried 
out in the work. According to the algorithm of the visibility graph, the 
daily values of stock indices are converted into a network, the spectral 
and topological properties of which are sensitive to the critical and 
crisis phenomena of the studied complex systems. It is shown that 
some of the spectral and topological characteristics can serve as 
measures of the complexity of the stock market, and their specific 
behaviour in the pre-crisis period is used as indicators-precursors of 
crisis phenomena. The influence of globalization processes on the 
world stock market is taken into account by calculating the 
interconnection (multiplex) measures of complexity, which modifies in 
some way, but does not change the fundamentally predictive 
possibilities of the proposed indicators-precursors. 

Keywords: stock markets, graph theory, complex networks, visibility 
graph, spectral and topological analyzes, complexity measures, multiplex 
systems, financial system crashes. 

© В. М. Соловйов,  
В. В. Соловйова, 
А. Ш. Тулякова, 2019 

mailto:vikasolovieva2027@gmail.com


НЕЙРО-НЕЧІТКІ ТЕХНОЛОГІЇ МОДЕЛЮВАННЯ В ЕКОНОМІЦІ 2019, № 8 

4 

ГРАФИ ВИДИМОСТІ І ПЕРЕДВІСНИКИ ФОНДОВИХ КРАХІВ 
 

В. М. Соловйов  

Доктор фізико-математичних наук, професор,  
завідувач кафедри інформатики та прикладної математики 

Криворізький державний педагогічний університет 

просп. Гагаріна, 54, м. Кривий Ріг, 50086, Україна 
vnsoloviev2016@gmail.com 

 
В. В. Соловйова  

Кандидат економічних наук, доцент,  
доцент кафедри менеджменту і публічного адміністрування 

Криворізький економічний інститут ДВНЗ «Київський національний  
економічний університет імені Вадима Гетьмана» 

вул. Медична, 16, м. Кривий Ріг, 50090, Україна 
vikasolovieva2027@gmail.com 

 
А. Ш. Тулякова  

Магістр математики,  
Директор з наукової роботи 

ТОВ «КОНСОРИС КОНСАЛТИНГ» 

вул. Предславинська, 28, м. Київ, 03680, Україна  
tuliakovaanna@gmail.com 

 
 

Виходячи з мережної парадигми складності, у роботі проведено 
системний аналіз динаміки найбільших фондових ринків світу. За 
алгоритмом графа видимості щоденні значення фондових індек-
сів перетворено у мережу, спектральні і топологічні властивості 
якої чутливі до критичних і кризових явищ досліджуваних склад-
них систем. Показано, що деякі із спектральних і топологічних 
характеристик можуть слугувати мірами складності фондового 
ринку, а їх специфічна поведінка у передкризовий період викори-
стовуватись у якості індикаторів-передвісників кризових явищ. 
Вплив процесів глобалізації на світовий фондовий ринок врахо-
вано шляхом розрахунку міжмережніх (мультиплексних) мір 
складності, які певним чином модифікують, але не змінюють 
принципово прогнозних можливостей запропонованих індикато-
рів-передвісників. 

Ключові слова: фондові ринки, теорія графів, складні мережі, 
граф видимості, спектральний і топологічний аналізи, міри склад-
ності, мультиплексні системи, крахи фінансових систем. 
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В работе проведен системный анализ динамики крупнейших  
фондовых рынков мира, базируясь на сетевой парадигме слож-
ности. Согласно алгоритму графа видимости ежедневные значе-
ния фондовых индексов преобразованы в сеть, спектральные и 
топологические свойства которой чувствительны к критическим 
и кризисным явлениям исследуемых сложных систем. Показано, 
что некоторые из спектральных и топологических характеристик 
могут служить мерами сложности фондового рынка, а их специфи-
ческое поведение в предкризисный период использоваться в ка-
честве индикаторов-предвестников кризисных явлений. Влияние 
процессов глобализации на мировой фондовый рынок учтено  
путем расчета межсетевых (мультиплексных) мер сложности, ко-
торые определенным образом модифицируют, но не меняют 
принципиально прогнозных возможностей предложенных инди-
каторов-предвестников. 

Ключевые слова: фондовые рынки, теория графов, сложные сети, 
граф видимости, спектральный и топологический анализы, меры 
сложности, мультиплексные системы, крахи финансовых систем. 
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Introduction 

Data from both fundamental and technical analysis indicate that 
there are enough reasons for the recession now. Among the main 
ones are the threat of further collapse in the financial markets, the 
trade war with China, and the consequences of a long shutdown. 
Analysts also note the weakening of the positive impact of fiscal 
incentives. 

Participants in the debt market also bet on a rapid recession. The 
US yield curve took the form of a short-term inversion, signaling the 
likelihood of a downturn in the near future. This indicator is the most 
accurate and almost did not give false predictions in the history. Also, 
the danger isthat China and Saudi Arabia, the largest owners of 
American public debt, facing economic and budgetary problems, will 
simply be forced to sell US government bonds. It will almost 
inevitably trigger a massive escape of investors from the US public 
debt. 

As for the stock market, after the 2008 crisis, the US market (its 
largest segment) recovered to its mid-2000 levels, when the Dow 
Jones index approached around 10500 points in October 2010. Since 
then, by January 2018, Dow Jones has reached its maximum level 
about 26600, having rolled over 8 years approximately in 2,5 times. 
The current virtually continuous growth — one of the longest in the 
history of the US stock market. For comparison: for the period from 
the beginning of 1928 to September 1929, the Dow Jones index rose 
from the level of 190 to 382, which is almost double. At the same 
time, the rally before the crisis in 2008 was much more modest: an 
increase from the level of 10000 (September 2005) to the maximum 
July 2007 about 13000 was only 1.3 times. The technical analysis 
shows a significant probability of continuing the fall of the stock 
market and the development of a crisis situation. 

According to a recent report by experts from the World Economic 
Forum on Global Risk Factors in 2019, the main ones are the 
economic confrontation between the largest countries and the 
achievement of the pivotal pace of global economic growth [1]. 

One of the most prestigious anti-crisis management experts 
Nouriel Roubini predicts the global financial crisis in 2020 [2]. 
In his view, there are at least ten reasons for this, the main of 
which, in addition to the above, is the excessive level of credit in 
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many developing countries and in some developed countries; 
excessive use of high frequency/algorithmic stock trading will 
increase the likelihood of a very sharp collapse of the markets 
(flash crash). 

Therefore, in the face of a possible recession, it is important to 
timely carry out a forward-looking analysis of financial markets, to 
identify and test indicators of likely crises with a view to their early 
prevention. 

The doctrine of the unity of the scientific method states that for 
the study of events in socio-economic systems, the same methods and 
criteria are applicable as in the study of natural phenomena. 
Significant success was achieved within the framework of 
interdisciplinary approaches and the theory of self-organization — 
synergetics, which according to the classification of G. Malinetsky [3] 
is on the verge of a new paradigm. 

The modern paradigm of synergetics is a complexity paradigm. In 
the paradigm of complexity it is possible to investigate, based on the 
methods of mathematical modeling, data of natural sciences and 
interdisciplinary approaches, and set very deep questions [4]. In the 
framework of the complexity paradigm it became apparent that we 
should move from well-studied systems and processes, taking into 
account the minimal number of new entities that are characteristic of 
the social sciences or the humanities. Apparently, one of these 
entities is the bonds, that is, what characterizes the interaction of the 
elements that are part of the system, that makes parts of the whole. 
The set of these links is called network.  

The new interdisciplinary study of complex systems, known as the 
complex networks theory, laid the foundation for a new network 
paradigm of synergetics [3]. He studies the characteristics of 
networks, taking into account not only their topology, but also 
statistical properties, the distribution of weights of individual nodes 
and edges, the effects of information dissemination, robustness, etc. 
[5–8]. Complex networks include electrical, transport, information, 
social, economic, biological, neural and other networks [9–11]. The 
network paradigm has become dominant in the study of complex 
systems since it allows you to enter new quantitative measures of 
complexity not existing for the time series [12]. Moreover, the 
network paradigm provides adequate support for the core concepts of 
Industry 4.0 [13]. 
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Statement of the research task 

Previously, we introduced various quantitative measures of 
complexity for individual time series [14, 15]. 

Significant advantage of the introduced measures is their 
dynamism, that is, the ability to monitor the time of change in the 
chosen measure and compare with the corresponding dynamics of 
the output time series. This allowed us to compare the critical 
changes in the dynamics of the system, which is described by the 
time series, with the characteristic changes of concrete measures of 
complexity. It turned out that quantitative measures of complexity 
respond to critical changes in the dynamics of a complex system, 
which allows them to be used in the diagnostic process and 
prediction of future changes. In [15], we introduced network 
complexity measures and adapted them to study system dynamics. 
But networks are rarely isolated. Therefore, it is necessary to take 
into account the interconnection interaction, which can be realized 
within the framework of different models [16]. We will consider it 
by simulating so-called multiplex networks, the features of which 
are reduced to a fixed number of nodes in each layer, but they are 
linked by different bonds [16]. 

Methods of converting time series into graphs 

Most complex systems inform their structural and dynamic 
nature by generating a sequence of certain characteristics known as 
time series. In recent years, interesting algorithms for the 
transformation of time series into a network have been developed, 
which allows to extend the range of known characteristics of time 
series even to network ones. Recently, several approaches have 
been proposed to transform time sequences into complex network-
like mappings. These methods can be conventionally divided into 
three classes [17]. The first is based on the study of the convexity of 
successive values of the time series and is called visibility graph 
(VG) [17, 19].  

The second analyzes the mutual approximation of different 
segments of the time sequence and uses the technique of recurrent 
analysis [17]. The recurrent diagram reflects the existing repetition of 
phase trajectories in the form of a binary matrix whose elements are 
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units or zeros, depending on whether they are close (recurrent) with 
given accuracy or not, the selected points of the phase space of the 
dynamic system. The recurrence diagram is easily transformed into an 
adjacency matrix, on which the spectral and topological 
characteristics of the graph are calculated [15, 18].  

Finally, if the basis of forming the links of the elements of the 
graph is to put correlation relations between them, we obtain a 
correlation graph [15, 17]. To construct and analyze the properties of 
a correlation graph, we must form a adjacency matrix from the 
correlation matrix. To do this, you need to enter a value which, for the 
correlation field, will serve as the distance between the correlated 
agents. Such a distance may be dependent on the ratio of the 

correlation Cij value ( ) ( ).12, ijCjix −=  So, if the correlation 

coefficient between the two assets is significant, the distance between 
them is small, and, starting from a certain critical value xcr, assets can 
be considered bound on the graph. For an adjacency matrix, this 
means that they are adjacent to the graph. Otherwise, the assets are not 
contiguous. In this case, the binding condition of the graph is a 
prerequisite. 

The main purpose of such methods is to accurately reproduce the 
information stored in the time series in an alternative mathematical 
structure, so that powerful graph theory tools could eventually be used 
to characterize the time series from a different point of view in order 
to overcome the gap between nonlinear analysis of time series, 
dynamic systems and the graphs theory.  

The use of the complexity of recurrent networks to prevent critical 
and crisis phenomena in stock markets has been considered by us in a 
recent paper [18]. Therefore, in this paper we will focus on algorithms 
of the VG and multiplex VG (MVG). 

The algorithm of the VG is realized as follows [19]. Take a time 
series 

1 2,( ) [ , ,..., ]nY t y y y=  of length п. Each point in the time series 

data can be considered as a vertex in an associative network, and the 
edge connects two vertices if two corresponding data points can «see» 
each other from the corresponding point of the time series (Fig. 1). 
Formally, two values ya of the series (at a point in time 

at ) and by  (at 

a point in time bt ) are connected, if for any other value ( cc ty , ), which 

is placed between them (that is, bca ttt  ), the condition is satisfied: 
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( ) .c a
c a b a

b a

t t
y y y y

t t

−
 + −

−

 (1) 

Note that the visibility graph is always connected by definition and 
also is invariant under affine transformations, due to the mapping 
method. 

An alternative (and much simpler) algorithm is the horizontal 
visibility graph (HVG) [20], in which a connection can be established 
between two data points a and b, if one can draw a horizontal line 
in the time series joining them that does not intersect any intermediate 
dataheight yc by the following geometrical criterion:

,  for all  such that a b c a c by y y c t t t   ). 

 

 

Fig. 1. Illustration of constructing the visibility graph (red lines)  
and the horizontal visibility graph (green lines) 

In multiplex networks, there are two tasks: (1) turn separate time 
series on the network for each layer; (2) connect the intra-loop 
networks to each other. The first problem is solved within the 
framework of the standard algorithms described above. For interlayer 
interactions we use modified algorithm of VG. In this case, the 
normalized individual points of the time series are mutually visible, if 
(as in the case of a single row) the above conditions are fulfilled. 

For multiplex networks, the algorithm of the MVG for the three 
layers is presented in Fig. 2.  
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Fig. 2. Scheme for forming bonds between three layers  
of the multiplex network [28] 

For constructed graph methods described above, one can calculate 
spectral and topological properties. 

Spectral and topological graph properties  

Spectral theory of graphs is based on algebraic invariants of a 
graph — its spectra. The spectrum of graph G is the set of eigenvalues 
of a matrix Sp(G) corresponding to a given graph. For a adjacency 

matrix А of a graph, there exists an characteristic polynomial AI − , 

which is called the characteristic polynomial of a graph ( )GP . The 

eigenvalues of the matrix А (the zeros of the polynomial AI − ) and 

the spectrum of the matrix А (the set of eigenvalues) are called 
respectively their eigenvalues and the spectrum of graph G. The 
eigenvalues of the matrix А satisfy the equality xxA =  ( x – non-zero 

vector). Vectors x  satisfying this equality are called eigenvectors of 
matrix А (or graph G) corresponding to their eigenvalues.  

Another common type of graph spectrum is the spectrum of the 
Laplace matrix L. 
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The Laplace matrix is used to calculate the tree graphs, as well as 
to obtain some important spectral characteristics of the graph. Laplace 
matrix, L = D – A where D — diagonal matrix of order n: 







=
=

,,0

,,

ji

jid
d

i

ij  (2) 

where di — the degree of the corresponding vertex of the graph.  
The spectrum 𝑆𝑝𝐿(𝐺)  of the matrix L is the root of the 

characteristic equation 

0.I L I D A− = − + =   (3) 

Comparing the spectra 𝑆𝑝, 𝑆𝑝𝐿  it is easy to establish that: 

( )  

( )  

1 2

1 1

, ,..., ,

, ,..., ,
L

p n

p n n

S G

S G r r r−

=

= − − −

  

  
 

where 
1 r= .  

The number zero is the eigenvalue of the matrix L, which 
corresponds to an eigenvector whose coordinates are equal to unity. 
The multiplicity of the null eigenvalue is equal to the number of 
connected components of the graph. The rest of eigenvalues L are 
positive. The least of the positive eigenvalues 

2  is called the index of 

algebraic connectivity of the graph. This value represents the «force» 
of the connectivity of the graph component and is used in the analysis 
of reliability and synchronization of the graph. 

Important derivative characteristics are spectral gap, graph energy, 
spectral moments and spectral radius. The spectral gap is the 
difference between the largest and the next eigenvalues of the 
adjacency matrix and characterizes the rate of return of the system to 
the equilibrium state. The graph energy is the sum of the modules of 
the eigenvalues of the graph adjacency matrix: 

1

( ) .
n

i

i

E G
=

=   (4) 

The spectral radius is the largest modulus of the eigenvalue of the 
adjacency matrix. Denote by Nc the value which corresponds to an 
«average eigenvalue» of the graph adjacency matrix: 
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𝑁𝑐 = 𝑙𝑛 (
1

𝑛
∑ 𝑒𝑥𝑝(𝜆𝑖)
𝑛
𝑖=1 ) (5) 

and is called natural connectivity. 
The k-th spectral moment of the adjacency matrix is determined by 

the expression: 

1

1
( ) ,

n
k

k i

i

m A
n =

=   (6) 

where 
i  is the eigenvalues of the adjacency matrix, n is the number 

of vertices (nodes) of the graph G. 
Among the topological measures one of the most important is the 

node degree k — the number of links attached to this node. For non-
directed networks, the node’s degree ki is determined by the sum 

i ij

j

k a= , where the elements aij of the adjacency matrix. 

To characterize the «linear size» of the network, useful concepts of 
mean 〈𝑙〉 and maximum lmax shortest paths. For a connected network of 
n  nodes, the average path length is equal to 

〈𝑙〉 =
2

𝑛(𝑛−1)
∑ 𝑙𝑖𝑗𝑖>𝑗 , (7) 

where lij — the length of the shortest path between the nodes. The 
diameter of the connected graph is the maximum possible distance 
between its two vertices, while the minimum possible is the radius of 
the graph. 

If the average length of the shortest path gives an idea of the whole 
network and is a global characteristic, the next parameter — the 
clustering coefficient — is a local value and characterizes a separate 
node. For a given node m, the clustering coefficient Cm is defined as 
the ratio of the existing number of links between its closest neighbors 
Em to the maximum possible number of such relationships: 

2
.

( 1)

m

m

m m

E
C

k k
=

−
 (8) 

In (8) ( 1) / 2m mk k −  is the maximum number of links between the 

closest neighbors. The clustering coefficient of the entire network is 
defined as the average value Cm of all its nodes. The clustering 
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coefficient shows how many of the nearest neighbors of the given 
node are also the closest neighbors to each other. He characterizes the 
tendency to form groups of interconnected nodes — clusters. For real-
life networks, the high values of the clustering coefficient are high. 

Another feature of the node is the betweenness. It reflects the role 
of the node in establishing network connections and shows how 
many shortest paths pass through this node. Node betweenness σm is 
defined as 

( , , )
,

( , )
m

i j

B i m j

B i j

=  (9) 

where ( , )B i j  — the total number of shortest paths between nodes i 

and j, ( , , )B i m j  — the number of shortest paths between i,j those 

passing through the node m. The value (9) is also called the load or 
betweenness centrality.  

One of the main characteristics of the network is the distribution of 
nodes P(k), which is defined as the probability that the node i has a 
degree ki = k. For most natural and actual artificial networks there is a 
power distribution 

𝑃(𝑘)~1 𝑘𝛾⁄ , 𝑘 ≠ 0, 𝛾 > 0. (10) 

Also important topological characteristics are the vertex 
eccentricity — the largest distance between m and any other vertex, 
that is, how far the vertex is from the other vertices of the graph. The 
centrality of the vertex measures its relative importance in the graph. 
At the same time, the farness of a node is defined as the sum of its 
distances to all other nodes, and its closeness is defined asthe 
reciprocal of the farness.  

Another important measure is the link density in the graph, which 
is defined as the existing number of links ne, divided by the expression 
(n – 1)/2, where n is the number of nodes of the graph.  

A multilayer/multiplex network is a pair (G, C) where 
{ ;  {1,..., }}G G M=    there is a family of graphs (whether directed or 

not, weighed or not) ( , )G X E=   , called layers; and 

{ ;  , {1,...,M}, }C E X X=           . (11) 
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The latter is a set of links between nodes of different layers Ga and 
G  at   . Each element Ea is intralayer bonds M in contrast to the 

elements of each ( )E    , called interlayer bonds. 

A set of nodes of a layer Ga is denoted 1{ ,..., }NX x x=


 

 , and a 

adjacency matrix as 𝐴[𝛼] = (𝑎𝑖𝑗
𝛼 ) ∊ 𝐵𝑁𝛼×𝑁𝛼, where 

𝑎𝑖𝑗
𝛼 = {

1, (𝑥𝑖
𝛼 , 𝑥𝑗

𝛼) ∈ 𝐸𝛼 ,

0
 (12) 

for 1 ,i j N    and 1 M  . For an interlayer adjacency matrix 

we have 𝐴[𝛼,𝛽] = (𝑎𝑖𝑗
𝛼𝛽
) ∊ 𝐵𝑁𝛼×𝑁𝛽 , where 

𝑎𝑖𝑗
𝛼𝛽
= {1, (𝑥𝑖

𝛼 , 𝑥𝑗
𝛽
) ∈ 𝐸𝛼𝛽 ,

0
 (13) 

for 1 ≤ 𝑖 ≤ 𝑁𝛼 , 1 ≤ 𝑗 ≤ 𝑁𝛽 and 1 ≤ 𝛼, 𝛽 ≤ 𝑀, 𝛼 ≠ 𝛽. 

A multiplex network is a partial case of interlayer networks and 
contains a fixed number of nodes connected by different types of links. 
Multiplex networks are characterized by correlations of different 
nature [16], which enable the introduction of additional multiplexes. 

Let’s evaluate the quantitative overlap between the various layers. 
The average edge overlap equal [28] 

[ ]

[ ]

0,
(1 )

ij

iji j i

ai j i

a

M





=
−



  

  







, (14) 

and determines the number of layers in which this bond is present. Its 
value lies on the interval [1/ ,  1]M  and equals 1/M if the connection 

( , )i j  exists only in one layer, that is, if there is a layer a such that 
[ ] [ ]1,  =0   ij ija a=      . If all layers are identical, then ω = 1. 

Consequently, this measure can serve as a measure of the coherence 
of the output time series: high values ω indicate a noticeable 
correlation in the structure of time series.  

The total overlap Oαβ between the two layers α and β is defined as 
the total number of bonds that are shared between the layers α and β: 
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ij ijO a a  = , (15) 

where   . 

For a multiplex network, the vertex degree k become a vector 

[1] [ ]( ,...,  )M

i i ik k k= , (16) 

where 
[ ]

ik 
 is the degree of the node in the layer, that is, while the 

elements of the matrix of adjacency for the layer. Specificity of the 
vector character of the degree of the peak in multiplex networks 
allows for the introduction of additional interlayer characteristics. One 
of these is the overlap of the node’s degree 

[ ]

1

M

i io k
=

= 



. (17) 

The next measure quantitatively describes the interlayer 
correlations between the degrees of the selected node in two different 
layers. If, chosen from M  the layers of the pair ( , )   characterized 

by the distribution of degrees [ ] [ ]( ),  ( )P k P k  , the so-called interlayer 

mutual information is determined by the formula: 

[ ] [ ]
[ ] [ ]

, [ ] [ ]

( , )
( , ) log

( ) ( )

P k k
I P k k

P k P k
=

 
 

   
, (18) 

where [ ] [ ]( , )P k k   is the probability of finding a node degree [ ]k   in 

a layer   and degree [ ]k   in a layer β. The higher the Ia,β value, the 
more correlated are the distributions of the levels of the two layers, 
and, consequently, the structure of the time series associated with 
them. We also find the mean value Ia,β for all possible pairs of 
layers — the scalar value <Ia,β> that quantifies the information flow 
in the system.  

The quantity that quantitatively describes the distribution of the 
node degree i between different layers is the entropy of the 
multiplexed degree: 

   

i

i
M

i

i
i

o

k

o

k
S







ln
1


=

−= . (19) 
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Entropy is zero if all nodes are in the same layer and vice versa, 
has the maximum value when they are evenly distributed between 
different layers. That is, the higher the value Si, the even more links 
evenly the nodes’ connections are distributed between the layers. 

A similar magnitude is the multiplex participation coefficient: 

2
[ ]

1

1
1

M
i

i

i

kM
P

M o=

  
 = −  

−    






. (20) 

Pi takes values on the interval [0,1] and determines that 
homogeneous links of node i are distributed among M the layers. If all 
links of the node i lie in one layer, Pi = 0 and Pi = 1 if the node has a 
precisely defined number of links in each of the M layers. 
Consequently, the larger the coefficient Pi is, the more evenly 
distributed the participation of the node in the multiplex.  

Obviously, the magnitudes Si and Pi are very similar. 
We will show that some of these spectral and topological measures 

serve as measures of complexity of the system, and the dynamics of 
their changes allows us to build predictors of crisis situations on 
financial markets. 

Analysis of previous publications 

Recently, the first papers using the spectral and topological 
characteristics of dynamic systems presented as networks have 
appeared. Thus, in [21] it has been investigated universal and 
nonuniversal allometric scaling behaviors in the visibility graphs of 30 
world stock market indices. It has been established that the nature of 
such behavior is due by the fat-tailedness of the return distribution, the 
nonlinear long-term correlation, and a coupling effect between these 
two influential factors.  

The author [22] compared the mean degree value and clustering 
coefficient for a group of companies included in the DAX 30 index 
basket. He observed the companies from the DAX 30 index for two 
time periods: the first from the beginning of 2008 through the end of 
2009 and the second from the beginning of 2010 up to the end of 2011 
as these include the dates — a period of crisis (7th October 2008 — 
31st December 2008) and a period of recovery (7th May 2010 — 
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3rd August 2010). Contrary to expectations, the results differed little 
from the relatively low accuracy of the HVG procedure compared to VG. 

In the work [23], the data of 2571 stock companies in 2012 and the 
data of 2578 stock companies in 2013 are collected from Chinese 
stock market. Every year, data of these stock companies are randomly 
arranged. These data are then converted into some complex networks 
based on the visibility graph method. For these complex networks, 
degree distribution and clustering coefficient are considered. These 
results show that the complex networks have the power-law 
distribution and small-world properties. 

The authors of the article [24] construct an indicator to measure the 
magnitude of the super-exponential growth of stock prices, by 
measuring the degree of the price network, generated from the price 
time series. Twelve major international stock indices have been 
investigated. The work results show that this new indicator has strong 
predictive power for financial extremes, both peaks and troughs. By 
varying the models parameters, authors show the predictive power is 
very robust. The new indicator has a better performance than the 
indicator based on a well-known model of log-periodic oscillations of 
D. Sornette [25].  

Authors of another work [26] analyze high frequency data from 
S&P 500 via the HVG method, and find that all major crises that have 
taken place worldwide for the last twenty years, affected significantly 
the behavior of the price-index. Nevertheless, they observe that each 
of those crises impacted the index in a different way and magnitude. 
These results suggest that the predictability of the price-index series 
increases during the periods of crises.  

In the work [27] the researchers study the visibility graphs built 
from the time series of several stock market indices. They propose a 
validation procedure for each link of these graphs against a null 
hypothesis derived from ARCH-type modelling of such series. 
Building on this framework, made it possible to devise a market 
indicator that turns out to be highly correlated and even predictive of 
financial instability periods.  

Multiplex networks are actively used to simulate complex 
networks of different nature: from financial (stock market [26–29], 
banks [30], guarantee market [31]) to social [32]. Particular attention 
should be paid to the work [29], in which the above multiplex 
measures are analyzed for the subject of correlations with known 
stock markets crises. 
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Yet there is no systematic analysis of network and multiplex 
measures and the construction of indicators-predictors of the crisis 
phenomena in the stock market. 

Experimental results and their discussion 

The time series of daily values of stock market indexes for the 
period from 01/01/1983 to 10/01/2019 were selected as databases, 
which contained significant changes in the indexes, and were 
identified as crisis phenomena [33]. Among the set of stock indexes 
are the following: 

SP (S&P 500) — USA; 
FCHI (CAC 40) — France; 
DAX (DAX PERFORMANCE-INDEX) — Germany; 
N225 (Nikkei 225) — Japan; 
HSI (HANG SENG INDEX) — China; 
BSESN (S&P BSE SENSEX) — India; 
KS11 (KOSPI Composite Index) — South Korea; 
GSPTSE (S&P / TSX Composite index) — Canada; 
BVSP (IBOVESPA) — Brazil. 
Since historical intervals in storing stock indexes are different, we 

have formed two databases. One of them includes only three indices, 
but since 1983. The next is already 9 daily index values, but for a 
shorter period of time — since 2004 (Fig. 3).  

 
a) 

 
b) 

Fig. 3. Dynamics of daily values of stock indexes (a) of the USA,  
Canada and Japan during 1983–2019 and (b) the aggregate  

of all the considered indices for the period 2004–2019 
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The first short database allows you to analyze the seven most well-
known crises (shown in Fig. 3.a), while the second one is only 4 (Fig. 3.b). 

Calculations of spectral and topological measures by methods of VG, 
HVG were carried out in the following way. The time window was 
chosen, for example, a year or two (approximately 250 or 500 trading 
days), for which the corresponding graphs were constructed and their 
spectral, topological and multiplex properties were calculated. Next, the 
window was shifted step by step, for example, one week (5 trading days) 
and the procedure repeated until the time series were exhausted. 

The results of calculations for revived time series of graphs are shown 
in Figs. 4–6. Knowing the time of the onset of the crisis and comparing 
the time series with the dynamics of a certain indicator, it is possible to 
investigate its dependence on certain or other characteristic changes in 
the stock market: pre-crisis, crisis and post-crisis periods. 

 
a) 

 
c) 

 
b) 

 
d) 

Fig. 4. Dynamics of the S&P 500 index and the spectral (a), (b),  
topological (c) and spectral with the topological (d) measure  
of the network constructed by the visibility graph algorithm 
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From the spectral measures, we consider it important to predict the 
algebraic connectivity (

2  — Fig. 4.a), the maximal eigenvalues of 

the adjacency matrix (spectral radius) and the maximal node degree 
(λmax and Dmax — Fig. 4.b). From the topological measures, the 
average path length (APLen — Fig. 4.c) is found, which is in 
accordance with formula (7). Fig. 4.d demonstrates the universality of 
the spectral behavior (the graph natural connectivity Nc and the 
second spectral moment of the adjacency matrix M2) and the 
topological (mean node degree Da and link density Ld).  

Figure 4 shows that all of the above spectral measures have 
maximum values in pre-crisis periods. The complex system has the 
greatest complexity. With the approach of the crisis, the complexity of 
the system decreases, recovering from the crisis. Some of the 
topological, in particular, APLen, the diameter of the graph, etc., show 
an opposite relationship. Indeed, in more complex systems you can 
always find shorter paths that connect any nodes. During the crisis 
(reducing complexity, increasing the chaotic component), the length 
of the corresponding path increases. 

Parameters such as the width of the window w  and the step of 

its displacement along the time series are important. When w is 

small, the degree of complexity fluctuates noticeably, reacting not 
only to crises, but also to more or less noticeable fluctuations of the 
index. On the contrary, with too much window width there is a 
noticeable smoothing of the appropriate measure and if two crises 
are at a distance that is smaller than w , the indicators of both crises 

are averaged and less informative. If you choose an oversized 
parameter Δt, you might miss the actual crisis that distorts the 
indicator. 

As far as multiplex measures are concerned, they are very 
similar in their dynamics to the spectral and topological 
representations above (see Fig. 5). In the case of a shorter sample 
of a base of three layers (Figs. 5.a, 5.b), we have the antisymmetric 
behavior of the multiplex measures O, o, I (formulas (15), (17), 
(18)) and ,  S P  (formulas (19), (20)). A similar, albeit more noisy 

picture is observed in the case of a shorter observation time, but 
with 9 layers of base (Figs. 5.c, 5.d). 
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Figures 5 show that both multiplex measures are excellent 
indicators that warn in advance about the approaching crisis 
phenomenon, that is, are indicator-predictor. 

The MVG algorithm does not fundamentally change the picture, 
but predictive indicators are not as clear as in the case of VG. Fig. 6.a 
shows this conclusion on the example of the spectral radius, and 
Figs. 6.c, 6.d — multiplex measures. Fig. 6.b shows the immutability 
of the dynamics of the spectral measure (on an example of algebraic 
connectivity) with a decrease in the width of a moving window from 
500 to 250 days. 

 
a) 

 
c) 

 
b) 

 
d) 

Fig. 5. Dynamics of S&P 500 index and multiplex measures  
for a base of three (a), (b) and nine layers (c), (d).  

The graph was built using the multiplex visibility graph 
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Conclusions 

Thus, we have demonstrated the possibility of studying complex 
socio-economic systems as part of a network paradigm of complexity. 
A time series can be represented in an equivalent way — a network, 
or a multiplex network, which has a wide range of characteristics; 
both spectral and topological, and multiplexed. Examples of known 
financial crises have shown that most of the network measures can 
serve as indicators-precursors of crisis phenomena and can be used for 
possible early prevention of unwanted crises in the financial markets. 
They are an extension of the already proposed by us and «working» 
indicators, which use other measures of complexity [34]. 

 
a) 

 
c) 

 
b) 

 
d) 

Fig. 6. Dynamics of the S&P 500 index and the spectral and multiplex  
complexity measures, calculated on the basis of algorithms  

VG, MVG, MHVG 
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It should be noted that the proposed indicators-precursors do not 
solve the more general problem of forecasting future values or trends 
of the stock market. In this way, it is possible to use new approaches 
(see, for example, [35, 36]) or alternative methods based on 
algorithms of (deep) machine learning [37]. 
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