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Based on the network paradigm of complexity, a systematic analysis of
the dynamics of the largest stock markets in the world has been carried
out in the work. According to the algorithm of the visibility graph, the
daily values of stock indices are converted into a network, the spectral
and topological properties of which are sensitive to the critical and
crisis phenomena of the studied complex systems. It is shown that
some of the spectral and topological characteristics can serve as
measures of the complexity of the stock market, and their specific
behaviour in the pre-crisis period is used as indicators-precursors of
crisis phenomena. The influence of globalization processes on the
world stock market is taken into account by calculating the
interconnection (multiplex) measures of complexity, which modifies in
some way, but does not change the fundamentally predictive
possibilities of the proposed indicators-precursors.
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Buxozsuu 3 MepexHOI mapaJjurMu CKJIaJHOCTI, y po60Ti mpoBeJeHO
CHUCTEMHHH aHasi3 JUHAMIKH Hak6ibuux GOHLOBUX PUHKIB CBiTY. 3a
ajropuTMoM rpada BUAMMOCTI 10AeHH] 3Ha4YeHHS $OHILOBUX iHJEK-
CiB IIepeTBOPEHO y Mepexy, ClIeKTPaJIbHI i TOMOJIOTiYHi BJIaCTUBOCTI
AKOI YYyTJIUBI 0 KPUTUYHUX | KDU30BUX ABUILL JOCIIIPKYBAHUX CKJIA/-
HUX cucteM. [lokasaHo, o JedKi i3 cneKTpaJbHUX i TONOJOTIYHUX
XapaKTePUCTHUK MOXYTb CIYyryBaTH MipaMH CKJIaAHOCTI $OHZLOBOIO
PHHKY, a ix crenudivyHa MoBeiHKa Y HepeJKPU30BUH Mepiof; BUKOPH-
CTOBYBAaTHUCh Y SIKOCTI IHAMKATOpiB-NiepeBiCHUKIB KPU30BUX SBUILL.
BrsinB nporeciB ryiobasnizanii Ha cBiTOBUH POHJOBHUHA PUHOK Bpaxo-
BaHO LIIAXOM pO3PAaxyHKy MiDKMepexHix (MyJbTHIJIEKCHHUX) Mip
CKJIQIHOCTi, sIKi MEeBHUM YHHOM MOJAHUDIKYIOTb, ajse He 3MiHIOIOTb
MPUHLMUIIOBO NPOrHO3HUX MOX/IMBOCTEH 3alpONOHOBAHUX IHAMKATO-
piB-Iilepe iBICHUKIB.

KnrouoBi cnoBa: ¢pondogi puHku, meopis zpagie, ckaadHi mepesici,
epag sudumocmi, cnekmpaabHUll i monosoziyHull aHaizu, Mipu ckaao-
HOCMI, My/IbMUNAEKCHI cucmeMu, Kpaxu iHaHCco8UX cucmeM.
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B pa6oTe mpoBeJeH CUCTEMHBIA aHAJNW3 JAWHAMHUKH KPYMHEHUIIHX
$oHOBBIX PBIHKOB MHpa, 6a3MpysAch Ha CeTeBOM mapajurMme CJI0X-
HocTH. CorJjlacHO aJropuTMy rpada BUIUMOCTH exe/lHEBHble 3Haye-
HUA QOHJIOBBIX MH/IEKCOB Ipeobpa3oBaHbl B CeThb, CIEKTpasbHble U
TOIOJIOTHYEeCKHe CBOWCTBA KOTOPOH YYBCTBUTEJIbHBI K KPUTHYECKUM
Y KPU3UCHBIM SIBJIEHUAM HCCJIeAyeMbIX CJI0KHBIX cucTeM. [lokasaHo,
YTO HEKOTOpPBIE U3 CHEKTPAJIbHBIX U TONOJIOIMYECKUX XapaKTEPUCTUK
MOTYT CJAYKUTb MePaMH CJI0XKHOCTH POHJIOBOTO PHIHKA, a UX crieljudu-
YyecKoe MOBeJleHHe B IIpeIKPU3UCHBIM IepHo/| UCI0Jb30BaThCA B Ka-
YecTBe MHAUKATOPOB-IPe/BECTHUKOB KPU3HUCHBIX sIBJIeHUH. BausHue
NpOLeCCOB TJo6au3ald Ha MHUPOBOM (OHAOBBIA PBIHOK Y4TEHO
MyTeM pacyeTa MeXCeTeBbIX (My/JbTHUIJIEKCHBIX) MEP CJI0XKHOCTH, KO-
TOpble oOmnpejieleHHbIM 00pa3oM MOAUGUIIMPYIOT, HO He MEeHSIOT
NPUHIMINAJBHO NPOTHO3HBIX BO3MOXKHOCTEH Mpe/JsIoKeHHbIX HH/H-
KaTOpOB-IpeIBECTHUKOB.
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Introduction

Data from both fundamental and technical analysis indicate that
there are enough reasons for the recession now. Among the main
ones are the threat of further collapse in the financial markets, the
trade war with China, and the consequences of a long shutdown.
Analysts also note the weakening of the positive impact of fiscal
incentives.

Participants in the debt market also bet on a rapid recession. The
US yield curve took the form of a short-term inversion, signaling the
likelihood of a downturn in the near future. This indicator is the most
accurate and almost did not give false predictions in the history. Also,
the danger isthat China and Saudi Arabia, the largest owners of
American public debt, facing economic and budgetary problems, will
simply be forced to sell US government bonds. It will almost
inevitably trigger a massive escape of investors from the US public
debt.

As for the stock market, after the 2008 crisis, the US market (its
largest segment) recovered to its mid-2000 levels, when the Dow
Jones index approached around 10500 points in October 2010. Since
then, by January 2018, Dow Jones has reached its maximum level
about 26600, having rolled over 8 years approximately in 2,5 times.
The current virtually continuous growth — one of the longest in the
history of the US stock market. For comparison: for the period from
the beginning of 1928 to September 1929, the Dow Jones index rose
from the level of 190 to 382, which is almost double. At the same
time, the rally before the crisis in 2008 was much more modest: an
increase from the level of 10000 (September 2005) to the maximum
July 2007 about 13000 was only 1.3 times. The technical analysis
shows a significant probability of continuing the fall of the stock
market and the development of a crisis situation.

According to a recent report by experts from the World Economic
Forum on Global Risk Factors in 2019, the main ones are the
economic confrontation between the largest countries and the
achievement of the pivotal pace of global economic growth [1].

One of the most prestigious anti-crisis management experts
Nouriel Roubini predicts the global financial crisis in 2020 [2].
In his view, there are at least ten reasons for this, the main of
which, in addition to the above, is the excessive level of credit in
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many developing countries and in some developed countries;
excessive use of high frequency/algorithmic stock trading will
increase the likelihood of a very sharp collapse of the markets
(flash crash).

Therefore, in the face of a possible recession, it is important to
timely carry out a forward-looking analysis of financial markets, to
identify and test indicators of likely crises with a view to their early
prevention.

The doctrine of the unity of the scientific method states that for
the study of events in socio-economic systems, the same methods and
criteria are applicable as in the study of natural phenomena.
Significant success was achieved within the framework of
interdisciplinary approaches and the theory of self-organization —
synergetics, which according to the classification of G. Malinetsky [3]
is on the verge of a new paradigm.

The modern paradigm of synergetics is a complexity paradigm. In
the paradigm of complexity it is possible to investigate, based on the
methods of mathematical modeling, data of natural sciences and
interdisciplinary approaches, and set very deep questions [4]. In the
framework of the complexity paradigm it became apparent that we
should move from well-studied systems and processes, taking into
account the minimal number of new entities that are characteristic of
the social sciences or the humanities. Apparently, one of these
entities is the bonds, that is, what characterizes the interaction of the
elements that are part of the system, that makes parts of the whole.
The set of these links is called network.

The new interdisciplinary study of complex systems, known as the
complex networks theory, laid the foundation for a new network
paradigm of synergetics [3]. He studies the characteristics of
networks, taking into account not only their topology, but also
statistical properties, the distribution of weights of individual nodes
and edges, the effects of information dissemination, robustness, etc.
[5-8]. Complex networks include electrical, transport, information,
social, economic, biological, neural and other networks [9-11]. The
network paradigm has become dominant in the study of complex
systems since it allows you to enter new quantitative measures of
complexity not existing for the time series [12]. Moreover, the
network paradigm provides adequate support for the core concepts of
Industry 4.0 [13].
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Statement of the research task

Previously, we introduced various quantitative measures of
complexity for individual time series [14, 15].

Significant advantage of the introduced measures is their
dynamism, that is, the ability to monitor the time of change in the
chosen measure and compare with the corresponding dynamics of
the output time series. This allowed us to compare the critical
changes in the dynamics of the system, which is described by the
time series, with the characteristic changes of concrete measures of
complexity. It turned out that quantitative measures of complexity
respond to critical changes in the dynamics of a complex system,
which allows them to be used in the diagnostic process and
prediction of future changes. In [15], we introduced network
complexity measures and adapted them to study system dynamics.
But networks are rarely isolated. Therefore, it is necessary to take
into account the interconnection interaction, which can be realized
within the framework of different models [16]. We will consider it
by simulating so-called multiplex networks, the features of which
are reduced to a fixed number of nodes in each layer, but they are
linked by different bonds [16].

Methods of converting time series into graphs

Most complex systems inform their structural and dynamic
nature by generating a sequence of certain characteristics known as
time series. In recent years, interesting algorithms for the
transformation of time series into a network have been developed,
which allows to extend the range of known characteristics of time
series even to network ones. Recently, several approaches have
been proposed to transform time sequences into complex network-
like mappings. These methods can be conventionally divided into
three classes [17]. The first is based on the study of the convexity of
successive values of the time series and is called visibility graph
(VG) [17, 19].

The second analyzes the mutual approximation of different
segments of the time sequence and uses the technique of recurrent
analysis [17]. The recurrent diagram reflects the existing repetition of
phase trajectories in the form of a binary matrix whose elements are
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units or zeros, depending on whether they are close (recurrent) with
given accuracy or not, the selected points of the phase space of the
dynamic system. The recurrence diagram is easily transformed into an
adjacency matrix, on which the spectral and topological
characteristics of the graph are calculated [15, 18].

Finally, if the basis of forming the links of the elements of the
graph is to put correlation relations between them, we obtain a
correlation graph [15, 17]. To construct and analyze the properties of
a correlation graph, we must form a adjacency matrix from the
correlation matrix. To do this, you need to enter a value which, for the
correlation field, will serve as the distance between the correlated
agents. Such a distance may be dependent on the ratio of the

correlation Cj; value x(l,J)z,IZil—Ciji So, if the correlation

coefficient between the two assets is significant, the distance between
them is small, and, starting from a certain critical value X, assets can
be considered bound on the graph. For an adjacency matrix, this
means that they are adjacent to the graph. Otherwise, the assets are not
contiguous. In this case, the binding condition of the graph is a
prerequisite.

The main purpose of such methods is to accurately reproduce the
information stored in the time series in an alternative mathematical
structure, so that powerful graph theory tools could eventually be used
to characterize the time series from a different point of view in order
to overcome the gap between nonlinear analysis of time series,
dynamic systems and the graphs theory.

The use of the complexity of recurrent networks to prevent critical
and crisis phenomena in stock markets has been considered by us in a
recent paper [18]. Therefore, in this paper we will focus on algorithms
of the VG and multiplex VG (MVG).

The algorithm of the VG is realized as follows [19]. Take a time
series Y (t) =[y,,¥,.... y,] of length n. Each point in the time series

data can be considered as a vertex in an associative network, and the
edge connects two vertices if two corresponding data points can «see»
each other from the corresponding point of the time series (Fig. 1).
Formally, two values y, of the series (at a point in time t,) and y, (at
a point in time t,) are connected, if for any other value (yc.t;), which

is placed between them (that is, t, <t. <t,), the condition is satisfied:
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Note that the visibility graph is always connected by definition and
also is invariant under affine transformations, due to the mapping
method.

An alternative (and much simpler) algorithm is the horizontal
visibility graph (HVG) [20], in which a connection can be established
between two data points a and b, if one can draw a horizontal line
in the time series joining them that does not intersect any intermediate
dataheight y. by the following geometrical criterion:
Y.V, > Y, forall c such thatt, <t, <t,)-

1

HVG
0.8F
0.7¢
0.6
0.5-
0.4
0.3
0.2r

0.1

0

Fig. 1. lllustration of constructing the visibility graph (red lines)
and the horizontal visibility graph (green lines)

In multiplex networks, there are two tasks: (1) turn separate time
series on the network for each layer; (2) connect the intra-loop
networks to each other. The first problem is solved within the
framework of the standard algorithms described above. For interlayer
interactions we use modified algorithm of VG. In this case, the
normalized individual points of the time series are mutually visible, if
(as in the case of a single row) the above conditions are fulfilled.

For multiplex networks, the algorithm of the MVG for the three
layers is presented in Fig. 2.

10
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time

Fig. 2. Scheme for forming bonds between three layers
of the multiplex network [28]

For constructed graph methods described above, one can calculate
spectral and topological properties.

Spectral and topological graph properties

Spectral theory of graphs is based on algebraic invariants of a
graph — its spectra. The spectrum of graph G is the set of eigenvalues
of a matrix Sy(G) corresponding to a given graph. For a adjacency

matrix 4 of a graph, there exists an characteristic polynomial |1 - A,
which is called the characteristic polynomial of a graph PG(X). The
eigenvalues of the matrix 4 (the zeros of the polynomial |M - A|) and

the spectrum of the matrix 4 (the set of eigenvalues) are called
respectively their eigenvalues and the spectrum of graph G. The
eigenvalues of the matrix A4 satisfy the equality Ax =X (X — non-zero
vector). Vectors x satisfying this equality are called eigenvectors of

matrix 4 (or graph G) corresponding to their eigenvalues.
Another common type of graph spectrum is the spectrum of the
Laplace matrix L.

11
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The Laplace matrix is used to calculate the tree graphs, as well as
to obtain some important spectral characteristics of the graph. Laplace
matrix, L = D — A where D — diagonal matrix of order n:

di=j,
dij:{O,iij, @

where di — the degree of the corresponding vertex of the graph.
The spectrum S, (G) of the matrix L is the root of the

characteristic equation
|21 —L|=|21 -D+A[=0. (3)

Comparing the spectra S,,, S, it is easy to establish that:

SP(G):[A’/@’---’&,],
S, (G)=[r =AM =y F = 4],

where 4 =r.

The number zero is the eigenvalue of the matrix L, which
corresponds to an eigenvector whose coordinates are equal to unity.
The multiplicity of the null eigenvalue is equal to the number of
connected components of the graph. The rest of eigenvalues L are
positive. The least of the positive eigenvalues 4, is called the index of

algebraic connectivity of the graph. This value represents the «force»
of the connectivity of the graph component and is used in the analysis
of reliability and synchronization of the graph.

Important derivative characteristics are spectral gap, graph energy,
spectral moments and spectral radius. The spectral gap is the
difference between the largest and the next eigenvalues of the
adjacency matrix and characterizes the rate of return of the system to
the equilibrium state. The graph energy is the sum of the modules of
the eigenvalues of the graph adjacency matrix:

EG) =4 (@)
i=1
The spectral radius is the largest modulus of the eigenvalue of the

adjacency matrix. Denote by N, the value which corresponds to an
«average eigenvalue» of the graph adjacency matrix:

12
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Ne = In (X0, exp(2) 5)

and is called natural connectivity.
The k-th spectral moment of the adjacency matrix is determined by
the expression:

mk(A>=%iﬂf.k, (6)

where 4, is the eigenvalues of the adjacency matrix, n is the number

of vertices (nodes) of the graph G.

Among the topological measures one of the most important is the
node degree k — the number of links attached to this node. For non-
directed networks, the node’s degree k; is determined by the sum
k. =>_a; , where the elements a;; of the adjacency matrix.

J

To characterize the «linear size» of the network, useful concepts of
mean (l) and maximum |nax shortest paths. For a connected network of
n nodes, the average path length is equal to

2
0 = oy Zisi b (7)
where l;; — the length of the shortest path between the nodes. The

diameter of the connected graph is the maximum possible distance
between its two vertices, while the minimum possible is the radius of
the graph.

If the average length of the shortest path gives an idea of the whole
network and is a global characteristic, the next parameter — the
clustering coefficient — is a local value and characterizes a separate
node. For a given node m, the clustering coefficient Cy, is defined as
the ratio of the existing number of links between its closest neighbors
Enm to the maximum possible number of such relationships:

2E,,
G =it D ®)

In (8) k,, (k, —1)/2 is the maximum number of links between the

closest neighbors. The clustering coefficient of the entire network is
defined as the average value C, of all its nodes. The clustering

13
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coefficient shows how many of the nearest neighbors of the given
node are also the closest neighbors to each other. He characterizes the
tendency to form groups of interconnected nodes — clusters. For real-
life networks, the high values of the clustering coefficient are high.

Another feature of the node is the betweenness. It reflects the role
of the node in establishing network connections and shows how
many shortest paths pass through this node. Node betweenness o, is
defined as

BLm,j)
%= 278G, ) ®)

where B(i, j) — the total number of shortest paths between nodes i
and j, B(i,m, j) — the number of shortest paths between i,j those

passing through the node m. The value (9) is also called the load or
betweenness centrality.

One of the main characteristics of the network is the distribution of
nodes P(k), which is defined as the probability that the node i has a
degree ki = k. For most natural and actual artificial networks there is a
power distribution

PU)~1/py k% 0,y > 0. (10)

Also important topological characteristics are the vertex
eccentricity — the largest distance between m and any other vertex,
that is, how far the vertex is from the other vertices of the graph. The
centrality of the vertex measures its relative importance in the graph.
At the same time, the farness of a node is defined as the sum of its
distances to all other nodes, and its closeness is defined asthe
reciprocal of the farness.

Another important measure is the link density in the graph, which
is defined as the existing number of links ne, divided by the expression
(n—1)/2, where n is the number of nodes of the graph.

A multilayer/multiplex network is a pair (G,C) where
G ={G,; aefl...,M}} there is a family of graphs (whether directed or

not, weighed or not) G, =(X_,E,), called layers; and

C={EaﬂgXa><Xﬂ; a, pe{l,...M}, a = }. (12)

14
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The latter is a set of links between nodes of different layers G, and
G, at = /. Each element E, is intralayer bonds M in contrast to the

elements of each E_,(a = ), called interlayer bonds.
A set of nodes of a layer G, is denoted X, ={x/,..,x }, and a
adjacency matrix as Al = (af) € BNe*Ne, where

ag. — {1, (x{l,x(];") S E(Z’ (12)

for 1<i,J<N_ and 1<a <M . For an interlayer adjacency matrix
we have Al®A] = (a;’?) e BNa*Ng ‘where

af = {1' (36037 ) € Eep, (13)
0
fori<i<Nj,l1<j<Ngand1<a,f <Ma=+p.

A multiplex network is a partial case of interlayer networks and
contains a fixed number of nodes connected by different types of links.
Multiplex networks are characterized by correlations of different
nature [16], which enable the introduction of additional multiplexes.

Let’s evaluate the quantitative overlap between the various layers.
The average edge overlap equal [28]

o rEad
MZiZj>i (1_50,2 a,[J“]) ,

and determines the number of layers in which this bond is present. Its
value lies on the interval [1/M, 1] and equals 1/M if the connection

(i, j) exists only in one layer, that is, if there is a layer a such that
all=1al’=0v g=a . If all layers are identical, then w=1.

Consequently, this measure can serve as a measure of the coherence
of the output time series: high values « indicate a noticeable
correlation in the structure of time series.

The total overlap O% between the two layers « and S is defined as
the total number of bonds that are shared between the layers « and f:

(14)

15
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ap _ anf
O =% ajaj, (15)
where a # f3.
For a multiplex network, the vertex degree k become a vector
k, = (k™,..., k™M), (16)

where kI’ is the degree of the node in the layer, that is, while the

elements of the matrix of adjacency for the layer. Specificity of the
vector character of the degree of the peak in multiplex networks
allows for the introduction of additional interlayer characteristics. One
of these is the overlap of the node’s degree

M
0 = Z:lki[a] . (17)

The next measure quantitatively describes the interlayer
correlations between the degrees of the selected node in two different
layers. If, chosen from M the layers of the pair («,s) characterized

by the distribution of degrees P(k“!), P(k"), the so-called interlayer
mutual information is determined by the formula:

" P k[a],k[ﬂ]
I, =>.> Pk, k")log ( )

p(k[a])p(k[ﬁ]) !
where P(k“) k1) is the probability of finding a node degree k™! in

a layer « and degree k! in a layer 8. The higher the I, ; value, the
more correlated are the distributions of the levels of the two layers,
and, consequently, the structure of the time series associated with
them. We also find the mean value I,4 for all possible pairs of
layers — the scalar value <l,z> that quantifies the information flow
in the system.

The quantity that quantitatively describes the distribution of the
node degree i between different layers is the entropy of the
multiplexed degree:

(18)

M klel  le]
S =-> ——In-—, 19
=3 (19)
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Entropy is zero if all nodes are in the same layer and vice versa,
has the maximum value when they are evenly distributed between
different layers. That is, the higher the value S;, the even more links
evenly the nodes’ connections are distributed between the layers.

A similar magnitude is the multiplex participation coefficient:

M M ki[a] 2
e:m{k;[ s ” (20)

P; takes values on the interval [0,1] and determines that
homogeneous links of node i are distributed among M the layers. If all
links of the node i lie in one layer, P; = 0 and P; = 1 if the node has a
precisely defined number of links in each of the M layers.
Consequently, the larger the coefficient P; is, the more evenly
distributed the participation of the node in the multiplex.

Obviously, the magnitudes S; and P; are very similar.

We will show that some of these spectral and topological measures
serve as measures of complexity of the system, and the dynamics of
their changes allows us to build predictors of crisis situations on
financial markets.

Analysis of previous publications

Recently, the first papers using the spectral and topological
characteristics of dynamic systems presented as networks have
appeared. Thus, in [21] it has been investigated universal and
nonuniversal allometric scaling behaviors in the visibility graphs of 30
world stock market indices. It has been established that the nature of
such behavior is due by the fat-tailedness of the return distribution, the
nonlinear long-term correlation, and a coupling effect between these
two influential factors.

The author [22] compared the mean degree value and clustering
coefficient for a group of companies included in the DAX 30 index
basket. He observed the companies from the DAX 30 index for two
time periods: the first from the beginning of 2008 through the end of
2009 and the second from the beginning of 2010 up to the end of 2011
as these include the dates — a period of crisis (7th October 2008 —
31st December 2008) and a period of recovery (7th May 2010 —
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3rd August 2010). Contrary to expectations, the results differed little
from the relatively low accuracy of the HVG procedure compared to VG.

In the work [23], the data of 2571 stock companies in 2012 and the
data of 2578 stock companies in 2013 are collected from Chinese
stock market. Every year, data of these stock companies are randomly
arranged. These data are then converted into some complex networks
based on the visibility graph method. For these complex networks,
degree distribution and clustering coefficient are considered. These
results show that the complex networks have the power-law
distribution and small-world properties.

The authors of the article [24] construct an indicator to measure the
magnitude of the super-exponential growth of stock prices, by
measuring the degree of the price network, generated from the price
time series. Twelve major international stock indices have been
investigated. The work results show that this new indicator has strong
predictive power for financial extremes, both peaks and troughs. By
varying the models parameters, authors show the predictive power is
very robust. The new indicator has a better performance than the
indicator based on a well-known model of log-periodic oscillations of
D. Sornette [25].

Authors of another work [26] analyze high frequency data from
S&P 500 via the HVG method, and find that all major crises that have
taken place worldwide for the last twenty years, affected significantly
the behavior of the price-index. Nevertheless, they observe that each
of those crises impacted the index in a different way and magnitude.
These results suggest that the predictability of the price-index series
increases during the periods of crises.

In the work [27] the researchers study the visibility graphs built
from the time series of several stock market indices. They propose a
validation procedure for each link of these graphs against a null
hypothesis derived from ARCH-type modelling of such series.
Building on this framework, made it possible to devise a market
indicator that turns out to be highly correlated and even predictive of
financial instability periods.

Multiplex networks are actively used to simulate complex
networks of different nature: from financial (stock market [26-29],
banks [30], guarantee market [31]) to social [32]. Particular attention
should be paid to the work [29], in which the above multiplex
measures are analyzed for the subject of correlations with known
stock markets crises.
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Yet there is no systematic analysis of network and multiplex
measures and the construction of indicators-predictors of the crisis
phenomena in the stock market.

Experimental results and their discussion

The time series of daily values of stock market indexes for the
period from 01/01/1983 to 10/01/2019 were selected as databases,
which contained significant changes in the indexes, and were
identified as crisis phenomena [33]. Among the set of stock indexes
are the following:

SP (S&P 500) — USA;

FCHI (CAC 40) — France;

DAX (DAX PERFORMANCE-INDEX) — Germany;

N225 (Nikkei 225) — Japan;

HSI (HANG SENG INDEX) — China;

BSESN (S&P BSE SENSEX) — India;

KS11 (KOSPI Composite Index) — South Korea;

GSPTSE (S&P / TSX Composite index) — Canada;

BVSP (IBOVESPA) — Brazil.

Since historical intervals in storing stock indexes are different, we
have formed two databases. One of them includes only three indices,
but since 1983. The next is already 9 daily index values, but for a
shorter period of time — since 2004 (Fig. 3).

1983-2019 2004-2019

2008 1
1987 |~ %P ——bsesn
0.8 — gsptse il —bvsp
—n225 | o
w 0.6 o 2019 1 % —feh
< "g 0.5 gsptse
£ 04 = [ 2019|  hsi
—ksl1
0.2 T ) o228
; —sp
0 1908 2015 oW 20 ]
0 5000 10000 0 1000 2(_)00 3000 4000 5000
time, days time, days
a) b)

Fig. 3. Dynamics of daily values of stock indexes (a) of the USA,
Canada and Japan during 1983-2019 and (b) the aggregate
of all the considered indices for the period 2004-2019
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The first short database allows you to analyze the seven most well-
known crises (shown in Fig. 3.a), while the second one is only 4 (Fig. 3.b).

Calculations of spectral and topological measures by methods of VG,
HVG were carried out in the following way. The time window was
chosen, for example, a year or two (approximately 250 or 500 trading
days), for which the corresponding graphs were constructed and their
spectral, topological and multiplex properties were calculated. Next, the
window was shifted step by step, for example, one week (5 trading days)
and the procedure repeated until the time series were exhausted.

The results of calculations for revived time series of graphs are shown
in Figs. 4-6. Knowing the time of the onset of the crisis and comparing
the time series with the dynamics of a certain indicator, it is possible to
investigate its dependence on certain or other characteristic changes in
the stock market: pre-crisis, crisis and post-crisis periods.

VG, w=500, At=5 VG, w=500, At=5
1

—sp

Sp, measures
S
W

Sp, measures

—D

max

0 ‘ ‘ ;
00 500 1000 1500 0 500 1000 1500 2000
time, days time, days
a) b)
VG, w=500, At=5 VG, w=500, At=5
! —sp zolm 2(108 1 1998 2008 20154 T——;
— 2011 — Ne
8 APLen t 8 2001 D
£ 1987 1998 2019 = l D
& g - e
g 0.5 2 0.5 M,
= =
- “ 97
2015 0 & j ) 2011 [¥2019
00 500 1000 1500 0 500 ) 1000 1500 2000
time, days time, days
c) d)

Fig. 4. Dynamics of the S&P 500 index and the spectral (a), (b),
topological (c) and spectral with the topological (d) measure
of the network constructed by the visibility graph algorithm
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From the spectral measures, we consider it important to predict the
algebraic connectivity (4, — Fig. 4.a), the maximal eigenvalues of

the adjacency matrix (spectral radius) and the maximal node degree
(Amax and Dmax — Fig. 4.b). From the topological measures, the
average path length (APLen — Fig. 4.c) is found, which is in
accordance with formula (7). Fig. 4.d demonstrates the universality of
the spectral behavior (the graph natural connectivity N, and the
second spectral moment of the adjacency matrix M,) and the
topological (mean node degree D, and link density Ly).

Figure 4 shows that all of the above spectral measures have
maximum values in pre-crisis periods. The complex system has the
greatest complexity. With the approach of the crisis, the complexity of
the system decreases, recovering from the crisis. Some of the
topological, in particular, APLen, the diameter of the graph, etc., show
an opposite relationship. Indeed, in more complex systems you can
always find shorter paths that connect any nodes. During the crisis
(reducing complexity, increasing the chaotic component), the length
of the corresponding path increases.

Parameters such as the width of the window w and the step of
its displacement along the time series are important. When w is
small, the degree of complexity fluctuates noticeably, reacting not
only to crises, but also to more or less noticeable fluctuations of the
index. On the contrary, with too much window width there is a
noticeable smoothing of the appropriate measure and if two crises
are at a distance that is smaller than w, the indicators of both crises
are averaged and less informative. If you choose an oversized
parameter At, you might miss the actual crisis that distorts the
indicator.

As far as multiplex measures are concerned, they are very
similar in their dynamics to the spectral and topological
representations above (see Fig. 5). In the case of a shorter sample
of a base of three layers (Figs. 5.a, 5.b), we have the antisymmetric
behavior of the multiplex measures O, o, | (formulas (15), (17),
(18)) and S, P (formulas (19), (20)). A similar, albeit more noisy
picture is observed in the case of a shorter observation time, but
with 9 layers of base (Figs. 5.c, 5.d).
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Fig. 5. Dynamics of S&P 500 index and multiplex measures
for a base of three (a), (b) and nine layers (c), (d).
The graph was built using the multiplex visibility graph

Figures 5 show that both multiplex measures are excellent
indicators that warn in advance about the approaching crisis
phenomenon, that is, are indicator-predictor.

The MVG algorithm does not fundamentally change the picture,
but predictive indicators are not as clear as in the case of VG. Fig. 6.a
shows this conclusion on the example of the spectral radius, and
Figs. 6.c, 6.d — multiplex measures. Fig. 6.b shows the immutability
of the dynamics of the spectral measure (on an example of algebraic
connectivity) with a decrease in the width of a moving window from
500 to 250 days.
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Fig. 6. Dynamics of the S&P 500 index and the spectral and multiplex
complexity measures, calculated on the basis of algorithms
VG, MVG, MHVG

Conclusions

Thus, we have demonstrated the possibility of studying complex
socio-economic systems as part of a network paradigm of complexity.
A time series can be represented in an equivalent way — a network,
or a multiplex network, which has a wide range of characteristics;
both spectral and topological, and multiplexed. Examples of known
financial crises have shown that most of the network measures can
serve as indicators-precursors of crisis phenomena and can be used for
possible early prevention of unwanted crises in the financial markets.
They are an extension of the already proposed by us and «working»
indicators, which use other measures of complexity [34].
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It should be noted that the proposed indicators-precursors do not
solve the more general problem of forecasting future values or trends
of the stock market. In this way, it is possible to use new approaches
(see, for example, [35, 36]) or alternative methods based on
algorithms of (deep) machine learning [37].
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