Neuro-Fuzzy Modeling Techniques in Economics

Neuro-Fuzzy Modeling Techniques in Economics

Графи видимості і передвісники фондових крахів

Visibility graphs and precursors of stock crashes

DOI:

10.33111/nfmte.2019.003

Анотація: Виходячи з мережної парадигми складності, у роботі проведено системний аналіз динаміки найбільших фондових ринків світу. За алгоритмом графа видимості щоденні значення фондових індексів перетворено у мережу, спектральні і топологічні властивості якої чутливі до критичних і кризових явищ досліджуваних складних систем. Показано, що деякі із спектральних і топологічних характеристик можуть слугувати мірами складності фондового ринку, а їх специфічна поведінка у передкризовий період використовуватись у якості індикаторів-передвісників кризових явищ. Вплив процесів глобалізації на світовий фондовий ринок враховано шляхом розрахунку міжмережніх (мультиплексних) мір складності, які певним чином модифікують, але не змінюють принципово прогнозних можливостей запропонованих індикаторів-передвісників.
Abstract: Based on the network paradigm of complexity, a systematic analysis of the dynamics of the largest stock markets in the world has been carried out in the work. According to the algorithm of the visibility graph, the daily values of stock indices are converted into a network, the spectral and topological properties of which are sensitive to the critical and crisis phenomena of the studied complex systems. It is shown that some of the spectral and topological characteristics can serve as measures of the complexity of the stock market, and their specific behaviour in the pre-crisis period is used as indicators-precursors of crisis phenomena. The influence of globalization processes on the world stock market is taken into account by calculating the interconnection (multiplex) measures of complexity, which modifies in some way, but does not change the fundamentally predictive possibilities of the proposed indicators-precursors.
Ключові слова: фондові ринки, теорія графів, складні мережі, граф видимості, спектральний і топологічний аналізи, міри складності, мультиплексні системи, крахи фінансових систем
Key words: stock markets, graph theory, complex networks, visibility graph, spectral and topological analyzes, complexity measures, multiplex systems, financial system crashes
УДК: 330.4, 519.866, 519.246.8
UDC: 330.4, 519.866, 519.246.8

JEL: C69 F37

To cite paper
In APA style
Soloviev, V., Solovieva, V., & Tuliakova, A. (2019). Visibility graphs and precursors of stock crashes. Neuro-Fuzzy Modeling Techniques in Economics, 8, 3-29. http://doi.org/10.33111/nfmte.2019.003
In MON style
Соловйов В.М., Соловйова В., Тулякова А. Графи видимості і передвісники фондових крахів. Нейро-нечіткі технології моделювання в економіці. 2019. № 8. С. 3-29. http://doi.org/10.33111/nfmte.2019.003 (дата звернення: 13.09.2025).
With transliteration
Soloviev, V., Solovieva, V., Tuliakova, A. (2019) Hrafy vydymosti i peredvisnyky fondovykh krakhiv [Visibility graphs and precursors of stock crashes]. Neuro-Fuzzy Modeling Techniques in Economics, no. 8. pp. 3-29. http://doi.org/10.33111/nfmte.2019.003 (accessed 13 Sep 2025).
# 8 / 2019 # 8 / 2019
Download Paper
586
Views
124
Downloads
7
Cited by
Cited 5 times in Scopus

  1. World Economic Forum. (2019). The Global Risks Report 2019. Retrieved from http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf
  2. Roubini, N., & Rosa, B. (2018). The Makings of a 2020 Recession and Financial Crisis. Retrieved from https://www.project-syndicate.org/commentary/financial-crisis-in-2020-worse-than-2008-by-nouriel-roubini-and-brunello-rosa-2018-09?barrier=accesspaylog
  3. Malinetskiy, G. G. (2013). Teoriya samoorganizatsii. Na poroge IV paradigmy. Kompyuternyye issledovaniya i modelirovaniye (Computer research and modeling), 5(3), 315–366 [in Russian]
  4. Prigogine, I. (1980). From Being to Becoming Time and Complexity in the Physical Sciences. New York, NY: W.H. Freeman & Company.
  5. Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Boston, MA: Cambridge University Press. DOI: 10.1017/CBO9780511791383
  6. Cohen, R., & Havlin, S. (2010). Complex networks. Structure, robustness and function. New York, NY: Cambridge University Press. DOI: 10.1017/CBO9780511780356
  7. Albert, R., & Barabasi, A.-L. (2002). Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47–97. DOI: 10.1103/RevModPhys.74.47
  8. Newman, M., Watts, D., & Barabási, A.-L. (2006). The Structure and Dynamics of Networks. Princeton, NJ: Princeton University Press.
  9. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Reviews, 45(2), 167–256. DOI: 10.1137/S003614450342480
  10. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.
  11. Bianconi, G. (2015, September 1). Interdisciplinary and physics challenges in network theory. Europhysics Letters, 111(5), 1–7. DOI: 10.1209/0295-5075/111/56001
  12. Danilchuk, H., & Soloviev, V. (2015). Dynamics of graph spectral entropy in financial crisis. Socio-economic aspects of economics and management, 2, 227–234.
  13. Marsh, P. (2012). The New Industrial Revolution: Consumers, Globalization and the End of Mass Production. London, UK: Yale University Press.
  14. Soloviev, V. M., & Solovieva, K. V. (2012). Kіl’kіsnі metody otsіnky skladnostі v prognozuvannі sotsіalno-ekonomіchnykh system. In O. І. Chernyak & P. V. Zakharchenko (Eds.), Prognozuvannya sotsіal’no-ekonomіchnykh protsesіv: suchasnі pіdkhody ta perspektyvy (pp. 170–184). Berdyansk, Ukraine: Vidavets’ Tkachuk O. V. [in Ukrainian]
  15. Soloviev, V. N. (2015). Merezhnі mіry skladnostі sotsіal’no-ekonomіchnykh system. Vіsnik Cherkas’kogo unіversitetu. Serіya «Prikladna matematika. Іnformatika» (Bulletin of the Cherkasy University. Series «Applied Mathematics. Computer Science»), 38(371), 67–79 [in Ukrainian]
  16. Boccaletti, S., Bianconi, G., Criado, R., delGenio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122. DOI: 10.1016/j.physrep.2014.07.001
  17. Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., & Kurths, J. (2010). Recurrence-based time series analysis by means of complex network methods. International Journal of Bifurcation and Chaos, 21(4), 1019–1046. DOI: 10.1142/S0218127411029021
  18. Soloviev, V. N., & Tuliakova, A. Sh. (2016). Grafodynamіchnі metody doslіdzhennya skladnostі suchasnykh fondovykh rynkіv. Nejro-nechitki tekhnolohii modeliuvannia v ekonomitsi (Neuro-Fuzzy Modeling Techniques in Economics), 5, 152–179 [in Ukrainian]
  19. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008, April 1). From time series to complex networks: The visibility graph. PNAS, 105(13), 4972–4975. DOI: 10.1073/pnas.0709247105
  20. Luque, B., Lacasa, L. Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4), 1–11. DOI: 10.1103/PhysRevE.80.046103
  21. Qian, M. C., Jiang, Z. Q., & Zhou, W. X. (2010). Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices. Journal of Physics A: Mathematical and Theoretical, 43(33), 1–12. DOI: 10.1088/1751-8113/43/33/335002
  22. Birch, J. L. (2015). Modelling Financial Markets using Methods from Network Theory: PhD Thesis. Liverpool, UK: University of Liverpool. Retrieved from https://livrepository.liverpool.ac.uk/2028739/1/BirchJen_Aug2015_2028739.pdf
  23. Liu, F., Wang, N., & Wei, D. (2017). Analysis of Chinese Stock Market by Using the Method of Visibility Graph. The Open Cybernetics & Systemics Journal, 11, 36–43.
  24. Yan, W., & Serooskerken, E. T. (2015, September 4). Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth. PLoSONE, 10(9), 1–15. DOI: 10.1371/journal.pone.0128908
  25. Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and Applied Finance, 3(2), 219–255. DOI: 10.1142/S0219024900000115
  26. Vamvakaris, M. D., Pantelous, A. A., & Zuev, K. M. (2018). Time series analysis of S&P 500 index: A horizontal visibility graph approach. Physica A, 497, 41–51. DOI: 10.1016/j.physa.2018.01.010
  27. Serafino, M., Gabrielli, A., Cardarelli, G., & Cimini, G. (2017, October 30). Statistical validation of financial time series via visibility graph, 1–9. Retrieved from arXiv:1710.10980v1.
  28. Nicosia, V., Lacasa, L., & Latora, V. (2015). Network structure of multivariate time series. Scientific Reports, 5, 1–7. DOI: 10.1038/srep15508
  29. Musmeci, N., Nicosia, V., Aste, T., Di Matteo, T., & Latora, V. (2017, September 20). The multiplex dependency structure of financial markets. Complexity, 1–13. DOI: 10.1155/2017/9586064
  30. Bargigli, L., di Iasio, G., Infante, L., Lillo, F., & Pierobon, F. (2015). The multiplex structure of interbank networks. Quantitative Finance, 15, 673–691.
  31. Li, S., & Wen, S. (2017, July 9). Multiplex Networks of the Guarantee Market: Evidence from China. Complexity, 1–7. DOI: 10.1155/2017/9781890
  32. Stephen, C. (2015). Dynamic Phase and Group Detection in Pedestrian Crowd Data Using Multiplex Visibility Graphs. Procedia Computer Science, 53(1), 410–419. DOI: 10.1016/j.procs.2015.07.318
  33. Yahoo Finance. (2019). Stock Market. Retrieved from https://finance.yahoo.com
  34. Soloviev, V., & Belinskij, A. (2018, May 14–17). Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In V. Ermolayev, M. C. Suárez-Figueroa et al. (Eds.), Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer (Kyiv, Ukraine) (pp. 116–127). Retrieved from http://ceur-ws.org/Vol-2104/paper_175.pdf
  35. Soloviev, V., Saptsin,V., & Chabanenko, D. (2010). Financial time series prediction with the technology of complex Markov chains. Computer Modelling and New Technologies, 14(3), 63–67.
  36. Soloviev, V., Saptsin, V., & Chabanenko, D. (2011). Markov Chains application to the financial-economic time series prediction. Computer Modeling and New Technologies, 15(3), 16–20. Retrieved from arXiv:1111.5254v1.
  37. Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., & Vlachogiannakis, N. (2018). Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Systems With Applications, 112, 353–371. DOI: 10.1016/j.eswa.2018.06.032