
Neuro-Fuzzy Modeling Techniques in Economics
ISSN 2415-3516
Identifying stock market crashes by fuzzy measures of complexity
DOI:
10.33111/nfmte.2021.003
Анотація:
Abstract: This study, for the first time, presents the possibility of using fuzzy set theory in combination with information theory and recurrent analysis to construct indicators (indicators-precursors) of crisis phenomena in complex nonlinear systems. In our study, we analyze the 4 most important crisis periods in the history of the stock market – 1929, 1987, 2008 and the COVID-19 pandemic in 2020. In particular, using the sliding window procedure, we analyze how the complexity of the studied crashes changes over time, and how it depends on events such as the global stock market crises. For comparative analysis, we take classical Shannon entropy, approximation and permutation entropy, recurrent diagrams, and their fuzzy alternatives. Each of the fuzzy modifications uses three membership functions: exponential, sigmoidal, and simple linear functions. Empirical results demonstrate the fact that the fuzzification of classical entropy and recurrence approaches opens up prospects for constructing effective and reliable indicators-precursors of critical events in the studied complex systems
Ключові слова:
Key words: crash, critical event, stock market, entropy, recurrence plot, fuzzy set theory, indicator-precursor of crisis phenomena, fuzzy measure of complexity
УДК:
UDC:
JEL: C22 C58 G01 G17
To cite paper
In APA style
Bielinskyi, A., Soloviev, V., Semerikov, S., & Solovieva, V. (2021). Identifying stock market crashes by fuzzy measures of complexity. Neuro-Fuzzy Modeling Techniques in Economics, 10, 3-45. http://doi.org/10.33111/nfmte.2021.003
In MON style
Белінський А., Соловйов В.М., Семеріков С.О., Соловйова В. Identifying stock market crashes by fuzzy measures of complexity. Нейро-нечіткі технології моделювання в економіці. 2021. № 10. С. 3-45. http://doi.org/10.33111/nfmte.2021.003 (дата звернення: 19.09.2025).
With transliteration
Bielinskyi, A., Soloviev, V., Semerikov, S., Solovieva, V. (2021) Identifying stock market crashes by fuzzy measures of complexity. Neuro-Fuzzy Modeling Techniques in Economics, no. 10. pp. 3-45. http://doi.org/10.33111/nfmte.2021.003 (accessed 19 Sep 2025).

Download Paper
744
Views
150
Downloads
4
Cited by
- Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., & Ang, P.C.A. (2011). Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International journal of neural systems, 21(03), 199-211. https://doi.org/10.1142/s0129065711002808
- Aldalou, E., & Perçin, S. (2020). Application of integrated fuzzy MCDM approach for financial performance evaluation of Turkish technology sector. International Journal of Procurement Management, 13(1), 1-23. https://doi.org/10.1504/ijpm.2020.105198
- Al-Sharhan, S., Karray, F., Gueaieb, W., & Basir, O. (2001). Fuzzy entropy: a brief survey. In Proceedings of the 10th IEEE international conference on fuzzy systems (Cat. No. 01CH37297): Vol. 3 (pp. 1135-1139). IEEE. https://doi.org/10.1109/FUZZ.2001.1008855
- Alves, P. (2019). Chaos in historical prices and volatilities with five-dimensional Euclidean spaces. Chaos, Solitons & Fractals: X, 1, Article 100002. https://doi.org/10.1016/j.csfx.2019.100002
- Argyroudis, G. S., & Siokis, F. M. (2019). Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy. Physica A: Statistical Mechanics and its Applications, 524, 576–586. https://doi.org/10.1016/j.physa.2019.04.052
- Azami, H., Fernández, A., & Escudero, J. (2017). Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis. Medical & Biological Engineering & Computing, 55(11), 2037–2052. https://doi.org/10.1007/s11517-017-1647-5
- Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17), Article 174102. https://doi.org/10.1103/physrevlett.88.174102
- Bastos, J. A., & Caiado, J. (2011). Recurrence quantification analysis of global stock markets. Physica A: Statistical Mechanics and its Appli-cations, 390(7), 1315–1325. https://doi.org/10.1016/j.physa.2010.12.008
- Bielinskyi, A., Semerikov, S., Serdyuk, O., Solovieva, V., Soloviev, V., & Pichl, L. (2020). Econophysics of sustainability indices. CEUR Workshop Proceedings, 2713, 372-392. http://ceur-ws.org/Vol-2713/paper41.pdf
- Bielinskyi, A., & Soloviev, V. (2018). Complex network precursors of crashes and critical events in the cryptocurrency market. CEUR Workshop Proceedings, 2292, 37-45. http://ceur-ws.org/Vol-2292/paper02.pdf
- Bielinskyi, A., Soloviev, V., Semerikov, S., & Solovieva, V. (2019). Detecting stock crashes using Levy distribution. CEUR Workshop Proceedings, 2422, 420-433. http://ceur-ws.org/Vol-2422/paper34.pdf
- Boccara, N. (2010). Modeling complex systems. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-6562-2
- Castiglioni, P., & Di Rienzo, M. (2008). How the threshold “r” influences approximate entropy analysis of heart-rate variability. In Proceedings of the 2008 Computers in Cardiology (pp. 561-564). IEEE. https://doi.org/10.1109/CIC.2008.4749103
- Chen, W., Wang, Z., Xie, H., & Yu, W. (2007). Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), 266–272. https://doi.org/10.1109/tnsre.2007.897025
- Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61–68. https://doi.org/10.1016/j.medengphy.2008.04.005
- Collet, P., Eckmann, J. P., & Koch, H. (1981). Period doubling bifurcations for families of maps on . Journal of Statistical Physics, 25(1), 1–14. https://doi.org/10.1007/bf01008475
- De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20(4), 301–312. https://doi.org/10.1016/s0019-9958(72)90199-4
- Duran, N.D., Dale, R., Kello, C.T., Street, C.N.H., & Richardson, D.C. (2013). Exploring the movement dynamics of deception. Frontiers in Psychology, 4, Article 140. https://doi.org/10.3389/fpsyg.2013.00140
- Eckmann, J. P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57(3), 617–656. https://doi.org/10.1103/revmodphys.57.617
- Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–977. https://doi.org/10.1209/0295-5075/4/9/004
- Elias, J., & Narayanan Namboothiri, V. N. (2013). Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning. Nonlinear Dynamics, 76(1), 255–261. https://doi.org/10.1007/s11071-013-1124-0
- Eroglu, D., McRobie, F. H., Ozken, I., Stemler, T., Wyrwoll, K. H., Breitenbach, S. F. M., Marwan, N., & Kurths, J. (2016). See–saw rela-tionship of the Holocene East Asian–Australian summer monsoon. Nature Communications, 7(1), Article 12929. https://doi.org/10.1038/ncomms12929
- Farmer, J. D. (1982). Information Dimension and the Probabilistic Structure of Chaos. Zeitschrift Für Naturforschung A, 37(11), 1304–1326. https://doi.org/10.1515/zna-1982-1117
- García-Ochoa, E., González-Sánchez, J., Acuña, N., & Euan, J. (2008). Analysis of the dynamics of Intergranular corrosion process of sensitised 304 stainless steel using recurrence plots. Journal of Applied Electrochemistry, 39(5), 637–645. https://doi.org/10.1007/s10800-008-9702-4
- Gardini, L., Lupini, R., & Messia, M. G. (1989). Hopf bifurcation and transition to chaos in Lotka-Volterra equation. Journal of Mathematical Biology, 27(3), 259–272. https://doi.org/10.1007/bf00275811
- GitHub. (2021). Complex systems measures. https://github.com/Butman2099/Complex-systems-measures
- GitHub. (2021). EntropyHub: An open-source toolkit for entropic time series analysis. https://github.com/MattWillFlood/EntropyHub
- Graf, S. (1987). Statistically self-similar fractals. Probability Theory and Related Fields, 74(3), 357–392. https://doi.org/10.1007/bf00699096
- Grassberger, P., & Procaccia, I. (1983). Characterization of Strange Attractors. Physical Review Letters, 50(5), 346–349. https://doi.org/10.1103/physrevlett.50.346
- Grebogi, C., Ott, E., Pelikan, S., & Yorke, J. A. (1984). Strange attractors that are not chaotic. Physica D: Nonlinear Phenomena, 13(1-2), 261-268. https://doi.org/10.1016/0167-2789(84)90282-3
- Harris, P., Litak, G., Iwaniec, J., & Bowen, C. R. (2016). Recurrence Plot and Recurrence Quantification of the Dynamic Properties of Cross-Shaped Laminated Energy Harvester. Applied Mechanics and Materials, 849, 95–105. https://doi.org/10.4028/www.scientific.net/amm.849.95
- He, S., Sun, K., & Wang, R. (2018). Fractional fuzzy entropy algorithm and the complexity analysis for nonlinear time series. The European Physical Journal Special Topics, 227(7), 943-957. https://doi.org/10.1140/epjst/e2018-700098-x
- Hou, Y., Aldrich, C., Lepkova, K., Machuca, L., & Kinsella, B. (2016). Monitoring of carbon steel corrosion by use of electrochemical noise and recurrence quantification analysis. Corrosion Science, 112, 63–72. https://doi.org/10.1016/j.corsci.2016.07.009
- Humeau-Heurtier, A. (2015). The Multiscale Entropy Algorithm and Its Variants: A Review. Entropy, 17(5), 3110–3123. https://doi.org/10.3390/e17053110
- Hutchinson, J. E. (1981). Fractals and Self Similarity. Indiana University Mathematics Journal, 30(5), 713-747. https://www.jstor.org/stable/24893080
- Ishizaki, R., & Inoue, M. (2020). Analysis of local and global instability in foreign exchange rates using short-term information entropy. Physica A: Statistical Mechanics and its Applications, 555, Article 124595. https://doi.org/10.1016/j.physa.2020.124595
- Iwaniec, J., Uhl, T., Staszewski, W. J., & Klepka, A. (2012). Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dynamics, 70(1), 125–140. https://doi.org/10.1007/s11071-012-0436-9
- Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R., & Bekiros, S. (2019). A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization. Chaos, Solitons & Fractals, 126, 66–77. https://doi.org/10.1016/j.chaos.2019.05.023
- Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. Physics Letters A, 185(1), 77–87. https://doi.org/10.1016/0375-9601(94)90991-1
- Konvalinka, I., Xygalatas, D., Bulbulia, J., Schjødt, U., Jegindø, E. M., Wallot, S., van Orden, G., & Roepstorff, A. (2011). Synchronized arousal between performers and related spectators in a fire-walking ritual. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8514–8519. https://doi.org/10.1073/pnas.1016955108
- Lahmiri, S., & Bekiros, S. (2017). Disturbances and complexity in volatility time series. Chaos, Solitons & Fractals, 105, 38–42. https://doi.org/10.1016/j.chaos.2017.10.006
- Lahmiri, S., & Bekiros, S. (2019). Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison. Physica A: Statistical Mechanics and its Applications, 539, Article 122923. https://doi.org/10.1016/j.physa.2019.122923
- Lahmiri, S., & Bekiros, S. (2020). Randomness, Informational Entropy, and Volatility Interdependencies among the Major World Markets: The Role of the COVID-19 Pandemic. Entropy, 22(8), Article 833. https://doi.org/10.3390/e22080833
- Lahmiri, S., Bekiros, S., & Avdoulas, C. (2018). Time-dependent complexity measurement of causality in international equity markets: A spatial approach. Chaos, Solitons & Fractals, 116, 215–219. https://doi.org/10.1016/j.chaos.2018.09.030
- Lahmiri, S., Uddin, G. S., & Bekiros, S. (2017). Nonlinear dynamics of equity, currency and commodity markets in the aftermath of the global financial crisis. Chaos, Solitons & Fractals, 103, 342–346. https://doi.org/10.1016/j.chaos.2017.06.019
- Lam, W. S., Lam, W. H., Jaaman, S. H., & Liew, K. F. (2021). Performance Evaluation of Construction Companies Using Integrated Entropy–Fuzzy VIKOR Model. Entropy, 23(3), Article 320. https://doi.org/10.3390/e23030320
- Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2014). Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & Biological Engineering & Computing, 53(1), 77–87. https://doi.org/10.1007/s11517-014-1216-0
- Li, S., Zhao, Z., Wang, Y., & Wang, Y. (2011). Identifying spatial patterns of synchronization between NDVI and climatic determinants using joint recurrence plots. Environmental Earth Sciences, 64(3), 851–859. https://doi.org/10.1007/s12665-011-0909-z
- List of stock market crashes and bear markets. (2021, August 1). In Wikipedia. https://en.wikipedia.org/w/index.php?title=List_of_stock_market_crashes_and_bear_markets
- Longwic, R., Litak, G., & Sen, A. K. (2009). Recurrence Plots for Diesel Engine Variability Tests. Zeitschrift Für Naturforschung A, 64(1–2), 96–102. https://doi.org/10.1515/zna-2009-1-214
- Mandelbrot, B. B. (1985). Self-Affine Fractals and Fractal Dimension. Physica Scripta, 32(4), 257–260. https://doi.org/10.1088/0031-8949/32/4/001
- Marwan, N., Trauth, M. H., Vuille, M., & Kurths, J. (2003). Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods. Climate Dynamics, 21(3–4), 317–326. https://doi.org/10.1007/s00382-003-0335-3
- Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2), Article 026702. https://doi.org/10.1103/physreve.66.026702
- Moore, J. M., Corrêa, D. C., & Small, M. (2018). Is Bach’s brain a Markov chain? Recurrence quantification to assess Markov order for short, symbolic, musical compositions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8), Article 085715. https://doi.org/10.1063/1.5024814
- Nair, V., & Sujith, R. I. (2013). Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), Article 033136. https://doi.org/10.1063/1.4821475
- Nichols, J., Trickey, S., & Seaver, M. (2006). Damage detection using multivariate recurrence quantification analysis. Mechanical Systems and Signal Processing, 20(2), 421–437. https://doi.org/10.1016/j.ymssp.2004.08.007
- Palmieri, F., & Fiore, U. (2009). A nonlinear, recurrence-based approach to traffic classification. Computer Networks, 53(6), 761–773. https://doi.org/10.1016/j.comnet.2008.12.015
- Pham, T. D. (2016). Fuzzy recurrence plots. Europhysics Letters, 116(5), Article 50008. https://doi.org/10.1209/0295-5075/116/50008
- Pham, T. D. (2019). Fuzzy weighted recurrence networks of time series. Physica A: Statistical Mechanics and its Applications, 513, 409–417. https://doi.org/10.1016/j.physa.2018.09.035
- Pham, T. D. (2020). Fuzzy cross and fuzzy joint recurrence plots. Physica A: Statistical Mechanics and its Applications, 540, Article 123026. https://doi.org/10.1016/j.physa.2019.123026
- Pham, T. D. (2020). Fuzzy recurrence entropy. Europhysics Letters, 130(4), Article 40004. https://doi.org/10.1209/0295-5075/130/40004
- Pham, T. D. (2020). Fuzzy recurrence plots. In Fuzzy Recurrence Plots and Networks with Applications in Biomedicine (pp. 29-55). Springer. https://doi.org/10.1007/978-3-030-37530-0_4
- Pham, T. D., Wardell, K., Eklund, A., & Salerud, G. (2019). Classification of short time series in early Parkinsons disease with deep learning of fuzzy recurrence plots. IEEE/CAA Journal of Automatica Sinica, 6(6), 1306–1317. https://doi.org/10.1109/jas.2019.1911774
- Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297–2301. https://doi.org/10.1073/pnas.88.6.2297
- Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4), H1643–H1656. https://doi.org/10.1152/ajpheart.1994.266.4.h1643
- Pincus, S. M., & Huang, W. M. (1992). Approximate entropy: Statistical properties and applications. Communications in Statistics – Theory and Methods, 21(11), 3061–3077. https://doi.org/10.1080/03610929208830963
- Qian, Y., Yan, R., & Hu, S. (2014). Bearing Degradation Evaluation Using Recurrence Quantification Analysis and Kalman Filter. IEEE Transactions on Instrumentation and Measurement, 63(11), 2599–2610. https://doi.org/10.1109/tim.2014.2313034
- Rand, R., & Holmes, P. (1980). Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 15(4–5), 387–399. https://doi.org/10.1016/0020-7462(80)90024-4
- Reinertsen, E., Osipov, M., Liu, C., Kane, J. M., Petrides, G., & Clifford, G. D. (2017). Continuous assessment of schizophrenia using heart rate and accelerometer data. Physiological Measurement, 38(7), 1456–1471. https://doi.org/10.1088/1361-6579/aa724d
- Richardson, D. C., & Dale, R. (2005). Looking to Understand: The Coupling Between Speakers’ and Listeners’ Eye Movements and Its Relationship to Discourse Comprehension. Cognitive Science, 29(6), 1045–1060. https://doi.org/10.1207/s15516709cog0000_29
- Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039
- Roncagliolo Barrera, P., Rodríguez Gómez, F., & García Ochoa, E. (2019). Assessing of New Coatings for Iron Artifacts Conservation by Recurrence Plots Analysis. Coatings, 9(1), Article 12. https://doi.org/10.3390/coatings9010012
- Rostaghi, M., & Azami, H. (2016). Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Processing Letters, 23(5), 610–614. https://doi.org/10.1109/lsp.2016.2542881
- Ruelle, D. (1981). Small random perturbations of dynamical systems and the definition of attractors. Communications in Mathematical Physics, 82(1), 137–151. https://doi.org/10.1007/bf01206949
- Sanchez-Roger, M., Oliver-Alfonso, M. D., & Sanchís-Pedregosa, C. (2019). Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises. Mathematics, 7(11), Article 1091. https://doi.org/10.3390/math7111091
- Serrà, J., Serra, X., & Andrzejak, R. G. (2009). Cross recurrence quantification for cover song identification. New Journal of Physics, 11, Article 093017. https://doi.org/10.1088/1367-2630/11/9/093017
- Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Shao, W., & Wang, J. (2020). Does the “ice-breaking” of South and North Korea affect the South Korean financial market? Chaos, Solitons & Fractals, 132, Article 109564. https://doi.org/10.1016/j.chaos.2019.109564
- Shaw, R. (1981). Strange Attractors, Chaotic Behavior, and Information Flow. Zeitschrift Für Naturforschung A, 36(1), 80–112. https://doi.org/10.1515/zna-1981-0115
- Shi, B., Wang, L., Yan, C., Chen, D., Liu, M., & Li, P. (2019). Nonlinear heart rate variability biomarkers for gastric cancer severity: A pilot study. Scientific Reports, 9(1), Article 13833. https://doi.org/10.1038/s41598-019-50358-y
- Silva, D. F., De Souza, V. M., & Batista, G. E. (2013). Time series classification using compression distance of recurrence plots. In Proceedings of 2013 IEEE 13th International Conference on Data Mining (pp. 687-696). IEEE. https://doi.org/10.1109/ICDM.2013.128
- Soloviev, V., & Belinskiy, A. (2018). Complex systems theory and crashes of cryptocurrency market. In V. Ermolayev, M. Suárez-Figueroa, V. Yakovyna, H. Mayr, M. Nikitchenko, & A. Spivakovsky (Eds.), Communications in Computer and Information Science: Vol. 1007. Information and Communication Technologies in Education, Research, and Industrial Applications (pp. 276-297). Springer. https://doi.org/10.1007/978-3-030-13929-2_14
- Soloviev, V., & Belinskij, A. (2018). Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. CEUR Workshop Proceedings, 2104, 116-127. http://ceur-ws.org/Vol-2104/paper_175.pdf
- Soloviev, V., Bielinskyi, A., & Kharadzjan, N. (2020). Coverage of the coronavirus pandemic through entropy measures. CEUR Workshop Proceedings, 2832, 24-42. http://ceur-ws.org/Vol-2832/paper02.pdf
- Soloviev, V., Bielinskyi, A., Serdyuk, O., Solovieva, V., & Semerikov, S. (2020). Lyapunov exponents as indicators of the stock market crashes. CEUR Workshop Proceedings, 2732, 455-470. http://ceur-ws.org/Vol-2732/20200455.pdf
- Soloviev, V., Bielinskyi, A., & Solovieva, V. (2019). Entropy analysis of crisis phenomena for DJIA index. CEUR Workshop Proceedings, 2393, 434-449. http://ceur-ws.org/Vol-2393/paper_375.pdf
- Soloviev, V., Serdiuk, O., Semerikov, S., & Kohut-Ferens, O. (2019). Recurrence entropy and financial crashes. Advances in Economics, Business and Management Research, 99, 385-388. https://dx.doi.org/10.2991/mdsmes-19.2019.73
- Stangalini, M., Ermolli, I., Consolini, G., & Giorgi, F. (2017). Recurrence quantification analysis of two solar cycle indices. Journal of Space Weather and Space Climate, 7, Article A5. https://doi.org/10.1051/swsc/2017004
- Stender, M., Oberst, S., Tiedemann, M., & Hoffmann, N. (2019). Complex machine dynamics: systematic recurrence quantification analysis of disk brake vibration data. Nonlinear Dynamics, 97(4), 2483–2497. https://doi.org/10.1007/s11071-019-05143-x
- Strozzi, F., Zaldı́Var, J. M., & Zbilut, J. P. (2002). Application of nonlinear time series analysis techniques to high-frequency currency exchange data. Physica A: Statistical Mechanics and its Applications, 312(3–4), 520–538. https://doi.org/10.1016/s0378-4371(02)00846-4
- Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand, & L. Young (Eds.), Lecture Notes in Mathematics: Vol. 898. Dynamical systems and turbulence, Warwick 1980 (pp. 366-381). Springer-Verlag. https://doi.org/10.1007/BFb0091924
- Voss, A., Schroeder, R., Vallverdu, M., Cygankiewicz, I., Vazquez, R., de Luna, A. B., & Caminal, P. (2008). Linear and nonlinear heart rate variability risk stratification in heart failure patients. In Proceedings of the 2008 Computers in Cardiology (pp. 557-560). IEEE. https://doi.org/10.1109/CIC.2008.4749102
- Wang, G., & Wang, J. (2017). New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(1), Article 013117. https://doi.org/10.1063/1.4974216
- Wang, Y., Zheng, S., Zhang, W., Wang, G., & Wang, J. (2018). Fuzzy entropy complexity and multifractal behavior of statistical physics financial dynamics. Physica A: Statistical Mechanics and its Applications, 506, 486–498. https://doi.org/10.1016/j.physa.2018.04.086
- Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76(2), 965–973. https://doi.org/10.1152/jappl.1994.76.2.965
- Xie, H. B., He, W. X., & Liu, H. (2008). Measuring time series regularity using nonlinear similarity-based sample entropy. Physics Letters A, 372(48), 7140–7146. https://doi.org/10.1016/j.physleta.2008.10.049
- Xie, H. B., Sivakumar, B., Boonstra, T. W., & Mengersen, K. (2018). Fuzzy Entropy and Its Application for Enhanced Subspace Filtering. IEEE Transactions on Fuzzy Systems, 26(4), 1970–1982. https://doi.org/10.1109/tfuzz.2017.2756829
- Yang, Y. G., Pan, Q. X., Sun, S. J., & Xu, P. (2015). Novel Image Encryption based on Quantum Walks. Scientific Reports, 5(1), Article 7784. https://doi.org/10.1038/srep07784
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zaitouny, A., Walker, D. M., & Small, M. (2019). Quadrant scan for multi-scale transition detection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(10), Article 103117. https://doi.org/10.1063/1.5109925
- Zbilut, J. P., & Marwan, N. (2008). The Wiener–Khinchin theorem and recurrence quantification. Physics Letters A, 372(44), 6622–6626. https://doi.org/10.1016/j.physleta.2008.09.027
- Zhang, Z., Xiang, Z., Chen, Y., & Xu, J. (2020). Fuzzy permutation entropy derived from a novel distance between segments of time series. AIMS Mathematics, 5(6), 6244–6260. https://doi.org/10.3934/math.2020402
- Zhao, H., Deng, W., Yao, R., Sun, M., Luo, Y., & Dong, C. (2017). Study on a novel fault diagnosis method based on integrating EMD, fuzzy entropy, improved PSO and SVM. Journal of Vibroengineering, 19(4), 2562–2577. https://doi.org/10.21595/jve.2017.18052
- Zhao, X., & Zhang, P. (2020). Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series. Physica A: Statistical Mechanics and its Applications, 537, Article 122674. https://doi.org/10.1016/j.physa.2019.122674
- Zhao, Z. Q., Li, S. C., Gao, J. B., & Wang, Y. L. (2011). Identifying Spatial Patterns and Dynamics of Climate Change Using Recurrence Quantification Analysis: A Case Study of Qinghai–Tibet Plateau. International Journal of Bifurcation and Chaos, 21(04), 1127-1139. https://doi.org/10.1142/s0218127411028933
- Zhou, C., & Zhang, W. (2015). Recurrence Plot Based Damage Detection Method by Integrating Control Chart. Entropy, 17(5), 2624-2641. https://doi.org/10.3390/e17052624
- Zhou, Q., & Shang, P. (2020). Weighted multiscale cumulative residual Rényi permutation entropy of financial time series. Physica A: Statistical Mechanics and its Applications, 540, Article 123089. https://doi.org/10.1016/j.physa.2019.123089
- Zhou, R., Wang, X., Wan, J., & Xiong, N. (2021). EDM-Fuzzy: An Euclidean Distance Based Multiscale Fuzzy Entropy Technology for Diagnosing Faults of Industrial Systems. IEEE Transactions on Industrial Informatics, 17(6), 4046–4054. https://doi.org/10.1109/tii.2020.3009139
- Zolotova, N. V., & Ponyavin, D. I. (2006). Phase asynchrony of the north-south sunspot activity. Astronomy & Astrophysics, 449(1), L1–L4. https://doi.org/10.1051/0004-6361:200600013