Neuro-Fuzzy Modeling Techniques in Economics

Neuro-Fuzzy Modeling Techniques in Economics

Interval-valued intuitionistic fuzzy pattern recognition model for assessment of social cohesion

DOI:

10.33111/nfmte.2023.133

Анотація:
Abstract: Social cohesion is defined as the potential of a society to sustain the well-being, eliminate inequality, ensure the rights for every citizen, respect for dignity, the opportunities for human development and realization, and engagement of all individuals in the democratic system. There exist numerous researches in this direction differing in the method, structure and number of indicators constituting Social Cohesion Index (SCI). In the present study, we developed an approach based on interval-valued intuitionistic fuzzy tools for the assessment of SCI. In the adoption of the structure of SCI, we relied on the UN methodology. The advantages of the proposed approach are in taking into account the uncertainty caused by crisp input data and classical computation techniques. The issues addressed in the research encompass the effect of indicators on the overall SCI, computation of the weights of indicators and sub-indices, producing the aggregated index and assessing its level through fuzzy pattern recognition tools. The approach proposed in the current work can be a substantial advance in the methodology of SCI calculations.
Ключові слова:
Key words: social cohesion, interval-valued intuitionistic fuzzy number, pattern recognition
УДК:
UDC:

JEL: A13 C65 Z13

To cite paper
In APA style
Imanov, G., & Aliyev, A. (2023). Interval-valued intuitionistic fuzzy pattern recognition model for assessment of social cohesion. Neuro-Fuzzy Modeling Techniques in Economics, 12, 133-154. http://doi.org/10.33111/nfmte.2023.133
In MON style
Іманов К., Алієв А. Interval-valued intuitionistic fuzzy pattern recognition model for assessment of social cohesion. Нейро-нечіткі технології моделювання в економіці. 2023. № 12. С. 133-154. http://doi.org/10.33111/nfmte.2023.133 (дата звернення: 30.12.2024).
With transliteration
Imanov, G., Aliyev, A. (2023) Interval-valued intuitionistic fuzzy pattern recognition model for assessment of social cohesion. Neuro-Fuzzy Modeling Techniques in Economics, no. 12. pp. 133-154. http://doi.org/10.33111/nfmte.2023.133 (accessed 30 Dec 2024).
# 12 / 2023 # 12 / 2023
Download Paper
96
Views
45
Downloads
0
Cited by

  1. Jenson, J. (1998). Mapping Social Cohesion: The State of Canadian Research (CPRN Study No. F|03). Canadian Policy Research Networks. http://www.cccg.umontreal.ca/pdf/cprn/cprn_f03.pdf
  2. Woolley, F. (1998). Social Cohesion and Voluntary Activity: Making Connections. Centre for the Study of Living Standards. https://www.csls.ca/events/oct98/wool.pdf
  3. Putnam, R. (2000). Bowling alone: The Collapse and Revival of American Community. In Proceedings of the 2000 ACM conference on Computer supported cooperative work (CSCW ’00) (p. 357). Association for Computing Machinery. http://dx.doi.org/10.1145/358916.361990
  4. Imanov, G., & Akbarov, R. (2012). Fuzzy models for assessing the quality of a social system. Neuro-Fuzzy Modeling Techniques in Economics, 1, 142-160. http://doi.org/10.33111/nfmte.2012.142
  5. Lukianenko, D., & Simakhova, A. (2023). Civilizational Imperative of Social Economy. Problemy Ekorozwoju, 18(1), 129–138. https://doi.org/10.35784/pe.2023.1.13
  6. Chan, J., To, H.-P., & Chan, E. (2006). Reconsidering social cohesion: Developing a definition and analytical framework for empirical research. Social Indicators Research, 75(2), 273-302. https://doi.org/10.1007/s11205-005-2118-1
  7. Imanov, G., & Bayramov, V. (2015). Fuzzy approach to assessment of the national life satisfaction index. Neuro-Fuzzy Modeling Techniques in Economics, 4, 44-61. http://doi.org/10.33111/nfmte.2015.044
  8. Kobets, V., & Yatsenko, V. (2019). Influence of the fourth industrial revolution on divergence and convergence of economic inequality for various countries. Neuro-Fuzzy Modeling Techniques in Economics, 8, 124-146. http://doi.org/10.33111/nfmte.2019.124
  9. Kozlovskyi, S., Nikolenko, L., Peresada, O., Pokhyliuk, O., Yatchuk, O., Bolgarova, N., & Kulhanik, O. (2020). Estimation level of public welfare on the basis of methods of intellectual analysis. Global Journal of Environmen­tal Science and Management, 6(3), 355-372. https://doi.org/10.22034/gjesm.2020.03.06
  10. Antoniuk, L., & Cherkas, N. (2018). Macro level analysis of factors contributing to value added: technological changes in European countries. Problems and Perspectives in Management, 16(4), 417-428. https://doi.org/10.21511/ppm.16(4).2018.35
  11. Berger-Schmitt, R. (2000). Social cohesion as an aspect of the quality of societies: Concept and measurement (EU Reporting Working Paper No. 14). Centre for Survey Research and Methodology. https://is.muni.cz/el/1423/jaro2005/SOC917/um/EU2000Reporting-Cohesion-concepts_measures.pdf
  12. Schiefer, D., van der Noll, J., Delhey, J., & Boehnke, K. (2012). Cohesion Radar: Measuring Cohesiveness. Social Cohesion in Germany – a preliminary Review. Bertelsmann Stiftung. https://www.bertelsmann-stiftung.de/fileadmin/files/Projekte/Gesellschaftlicher_Zusammenhalt/englische_site/further-downloads/social-cohesion/Social_Cohesion_2012.pdf
  13. Choi, W.H. (2004). HKCSS Social Cohesion Indicators. The Hong Kong Council of Social Service.
  14. Council of Europe. (2005). Concerted development of social cohesion indicators: Methodological guide. Council of Europe Publishing. https://www.coe.int/t/dg3/socialpolicies/socialcohesiondev/source/GUIDE_en.pdf
  15. Ottone, E., & Sojo, A. (2007). Social Cohesion: Inclusion and a Sense of Belonging in Latin America and the Caribbean (United Nations document LC/G.2335). ECLAC. https://repositorio.cepal.org/server/api/core/bitstreams/c695475c-7714-4f52-a7c7-0ce648018524/content
  16. Burns, J., Hull, G., Lefko-Everett, K., & Njozela, L. (2018). Defining social cohesion (SALDRU Working Paper No. 216). SALDRU. https://www.opensaldru.uct.ac.za/bitstream/handle/11090/903/2018_216_Saldruwp.pdf
  17. The Rockefeller Foundation. (2019). Social cohesion: A practitioner’s guide to measurement challenges and opportunities. https://resilientcitiesnetwork.org/downloadable_resources/UR/Social-Cohesion-Handbook.pdf
  18. Dragolov, G., Ignácz, Z. S., Lorenz, J., Delhey, J., Boehnke, K., & Unzicker, K. (2016). Social Cohesion in the Western World. What Holds Societies Together: Insights from the Social Cohesion Radar. Springer. https://doi.org/10.1007/978-3-319-32464-7
  19. Moustakas, L. (2023). Social Cohesion: Definitions, Causes and Consequences. Encyclopedia, 3(3), 1028-1037. https://doi.org/10.3390/encyclopedia3030075
  20. Atanassov, K.T. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20(1), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  21. Atanassov, K.T., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4
  22. Namin, F.S., Ghadi, A., & Saki, F. (2022). A literature review of Multi Criteria Decision-Making (MCDM) towards mining method selection (MMS). Resources Policy, 77, Article 102676. https://doi.org/10.1016/j.resourpol.2022.102676
  23. de Oliveira, M.S., Steffen, V., de Francisco, A.C., & Trojan, F. (2023). Integrated data envelopment analysis, multi-criteria decision making, and cluster analysis methods: Trends and perspectives. Decision Analytics Journal, 8, Article 100271. https://doi.org/10.1016/j.dajour.2023.100271
  24. Villatoro, P. (2007). A system of indicators for monitoring Social Cohesion in Latin America (United Nations document LC/G.2362). ECLAC. https://repositorio.cepal.org/server/api/core/bitstreams/0b345664-7a27-48e9-8145-b2b82c7202ac/content
  25. The Global Economy. (2022). Economic growth – Country rankings [Data set]. Retrieved November 1, 2022, from https://www.theglobaleconomy.com/rankings/Economic_growth/
  26. SolAbility. (2022). Social Capital Index [Data set]. Retrieved Novem­ber 1, 2022, from https://solability.com/the-global-sustainable-competitiveness-index/the-index/social-capital
  27. Freedom House. (2022). Freedom in the World 2021. Azerbaijan [Data set]. Retrieved November 1, 2022, from https://freedomhouse.org/country/azerbaijan/freedom-world/2021
  28. Bharati, S.K. (2021). Transportation problem with interval-valued intuitionistic fuzzy sets: impact of a new ranking. Progress in Artificial Intelligence, 10, 129–145. https://doi.org/10.1007/s13748-020-00228-w
  29. Oztaysi, B., Onar, S.C., Goztepe, K., & Kahraman, C. (2017). Evaluation of Research Proposals for Grant Funding Using Interval-Valued Intuitionistic Fuzzy Sets. Soft Computing, 21, 1203-1218. https://doi.org/10.1007/s00500-015-1853-8
  30. Zhuang, H. (2018). Additively Consistent Interval-Valued Intuitionistic Fuzzy Preference Relations and Their Application to Group Decision Making. Information, 9(10), Article 260. https://doi.org/10.3390/info9100260
  31. Liao, H., Xu, Z., & Xia, M. (2014). Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation. Journal of Intelligent & Fuzzy Systems, 27(6), 2969–2985. https://doi.org/10.3233/IFS-141256
  32. Yager, R.R. (2004). OWA aggregation over a continuous interval argument with applications to decision making. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(5), 1952–1963. https://doi.org/10.1109/TSMCB.2004.831154
  33. Qi, X.-W., Liang, C.-Y., Zhang, E.-Q., & Ding, Y. (2011). Approach to interval-valued intuitionistic fuzzy multiple attributes group decision-making based on maximum entropy. Systems Engineering – Theory and Practice, 31(10), 1940-1948. https://sysengi.cjoe.ac.cn/EN/10.12011/1000-6788(2011)10-1940
  34. Gou, X., Xu, Z., & Liao, H. (2016). Exponential operations of interval-valued intuitionistic fuzzy numbers. International Journal of Machine Learning and Cybernetics, 7, 501-518. https://doi.org/10.1007/s13042-015-0434-6
  35. Abdullah, L., Goh, C., Zamri, N., & Othman, M. (2020). Application of interval valued intuitionistic fuzzy TOPSIS for flood management. Journal of Intelligent & Fuzzy Systems, 38(1), 873–881. https://doi.org/10.3233/JIFS-179455
  36. Wei, C.-P., Wang, P., & Zhang, Y.-Z. (2011). Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Information Sciences, 181(19), 4273-4286. https://doi.org/10.1016/j.ins.2011.06.001
  37. Naim, S., & Hagras, H. (2014). A type 2-hesitation fuzzy logic based multi-criteria group decision-making system for intelligent shared environ­ments. Soft Computing, 18, 1305–1319. https://doi.org/10.1007/s00500-013-1145-0
  38. Atanassov, K. (1999). Intuitionistic Fuzzy Sets. Physica-Verlag.